首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Capturing Joint Label Distribution for Multi-Label Classification Through Adversarial Learning
【24h】

Capturing Joint Label Distribution for Multi-Label Classification Through Adversarial Learning

机译:通过对抗学习捕获多标签分类的关节标签分布

获取原文
获取原文并翻译 | 示例

摘要

Label correlations are important for multi-label learning. Although current multi-label learning approaches can exploit first-order, second-order, and high-order label dependencies, they fail to exploit complete label correlations, which are included in the joint label distribution of the ground truth labels. However, directly modeling the complex and unknown joint label distribution is very challenging, if not impossible. In this paper, we propose an adversarial learning framework to enforce similarity between joint distribution of the ground truth multi-labels and the predicted multiple labels. Specifically, the proposed multi-label learning method includes a multi-label classifier and a label discriminator. The classifier minimizes error between predicted labels and corresponding ground truth labels and gives the discriminator room for error. The object of the discriminator is to distinguish the predicted labels from the ground truth labels. The classifier and discriminator are trained simultaneously through an alternate process. By adversarial learning, the joint label distribution of the predicted multi-labels converges to the joint distribution inherent in the ground truth multi-labels, and thus boosts the performance of multi-label learning as demonstrated in the experiments on 11 benchmark databases.
机译:标签相关对多标签学习很重要。虽然当前的多标签学习方法可以利用一阶,二阶和高阶标签依赖项,但它们未能利用完整的标签相关性,这些相关性包含在地面真理标签的联合标签分布中。但是,直接建模复杂和未知的关节标签分布非常具有挑战性,如果不是不可能的话。在本文中,我们提出了一个对抗性学习框架来强制执行地面真理多标签的联合分布与预测多个标签之间的相似性。具体地,所提出的多标签学习方法包括多标签分类器和标签鉴别器。分类器最小化预测标签和相应的地面真理标签之间的误差,并为判别器空间提供错误。鉴别者的对象是将预测标签与地面真理标签区分开来。分类器和鉴别器通过替代过程同时培训。通过对抗性学习,预测的多标签的联合标签分布会聚到地面真理多标签中固有的联合分布,从而提高了多标签学习的性能,如11个基准数据库的实验中所示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号