首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >An Approach for Building Efficient and Accurate Social Recommender Systems Using Individual Relationship Networks
【24h】

An Approach for Building Efficient and Accurate Social Recommender Systems Using Individual Relationship Networks

机译:利用个人关系网建立高效,准确的社会推荐系统的方法

获取原文
获取原文并翻译 | 示例

摘要

Social recommender system, using social relation networks as additional input to improve the accuracy of traditional recommender systems, has become an important research topic. However, most existing methods utilize the entire user relationship network with no consideration to its huge size, sparsity, imbalance, and noise issues. This may degrade the efficiency and accuracy of social recommender systems. This study proposes a new approach to manage the complexity of adding social relation networks to recommender systems. Our method first generates an individual relationship network (IRN) for each user and item by developing a novel fitting algorithm of relationship networks to control the relationship propagation and contracting. We then fuse matrix factorization with social regularization and the neighborhood model using IRN's to generate recommendations. Our approach is quite general, and can also be applied to the item-item relationship network by switching the roles of users and items. Experiments on four datasets with different sizes, sparsity levels, and relationship types show that our approach can improve predictive accuracy and gain a better scalability compared with state-of-the-art social recommendation methods.
机译:使用社会关系网络作为附加输入以提高传统推荐系统的准确性的社会推荐系统已经成为重要的研究课题。但是,大多数现有方法利用了整个用户关系网络,而没有考虑其巨大的规模,稀疏性,不平衡和噪声问题。这可能会降低社交推荐系统的效率和准确性。这项研究提出了一种新方法来管理将社交关系网络添加到推荐系统的复杂性。我们的方法首先通过开发一种新颖的关系网络拟合算法来控制关系的传播和收缩,为每个用户和每个商品生成一个单独的关系网络(IRN)。然后,我们将矩阵分解与社会正则化和使用IRN的邻域模型融合,以生成推荐。我们的方法非常通用,并且可以通过切换用户和项目的角色而应用于项目-项目关系网络。对具有不同大小,稀疏度和关系类型的四个数据集进行的实验表明,与最新的社交推荐方法相比,我们的方法可以提高预测准确性并获得更好的可伸缩性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号