首页> 外文期刊>Information Theory, IEEE Transactions on >Improved Constructions of Frameproof Codes
【24h】

Improved Constructions of Frameproof Codes

机译:框架验证码的改进构造

获取原文
获取原文并翻译 | 示例

摘要

Frameproof codes are used to preserve the security in the context of coalition when fingerprinting digital data. Let $M_{c,l}(q)$ be the largest cardinality of a $q$-ary $c$-frameproof code of length $l$ and $R_{c,l}=lim_{qrightarrow infty}M_{c,l}(q)/q^{lceil l/crceil}$. It has been determined by Blackburn that $R_{c,l}=1$ when $lequiv 1 (bmod c),$ $R_{c,l}=2$ when $c=2$ and $l$ is even, and $R_{3,5}={5over 3}$. In this paper, we give a recursive construction for $c$-frameproof codes of length $l$ with respect to the alphabet size $q$ . As applications of this construction, we establish the existence results for $q$-ary $c$-frameproof codes of length $c+2$ and size ${c+2over c}(q-1)^2+1$ for all odd $q$ when $c=2$ and for all $qequiv 4pmod{6}$ when $c=3$ . Furthermore, we show that $R_{c,c+2}=(c+2)/c$ meeting the upper bound given by Blackburn, for all integers $c$ such that $c+1$ is a prime power.
机译:防指纹代码用于在对数字数据进行指纹识别时在联盟上下文中保持安全性。令$ M_ {c,l}(q)$为长度为$ l $且$ R_ {c,l} = lim_ {qrightarrow infty} M_ { c,l}(q)/ q ^ {lceil l / crceil} $。布莱克本已确定,当$ lequiv 1(bmod c)时,$ R_ {c,l} = 1 $,当$ c = 2 $和$ l $是偶数时,$ $ R_ {c,l} = 2 $,和$ R_ {3,5} = {5over 3} $。在本文中,我们针对字母大小$ q $给出了长度为$ l $的$ c $防帧码的递归构造。作为此构造的应用,我们建立了长度为$ c + 2 $且大小为{{c + 2over c}(q-1)^ 2 + 1 $的$ q $ -ary $ c $ -frameproof码的存在结果当$ c = 2 $时所有奇数$ q $,当$ c = 3 $时所有qqequiv 4pmod {6} $。此外,对于所有整数$ c $,我们证明$ R_ {c,c + 2} =(c + 2)/ c $满足Blackburn给定的上限,使得$ c + 1 $是素数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号