首页> 外文期刊>IEEE Transactions on Information Theory >Greedy Adaptive Linear Compression in Signal-Plus-Noise Models
【24h】

Greedy Adaptive Linear Compression in Signal-Plus-Noise Models

机译:信号加噪声模型中的贪婪自适应线性压缩

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we examine adaptive compression policies, when the sequence of vector-valued measurements to be compressed is noisy and the compressed variables are themselves noisy. The optimization criterion is information gain. In the case of sequential scalar compressions, the unit-norm compression vectors that greedily maximize per-stage information gain are eigenvectors of an a priori error covariance matrix, and the greedy policy selects them according to eigenvalues of a posterior covariance matrix. These eigenvalues depend on all previous compressions and are computed recursively. A water-filling solution is given for the optimum compression policy that maximizes net information gain, under a constraint on the average norm of compression vectors. We provide sufficient conditions under which the greedy policy for maximizing stepwise information gain actually is optimal in the sense of maximizing the net information gain. In the case of scalar compressions, our examples and simulation results illustrate that the greedy policy can be quite close to optimal when the noise sequences are white.
机译:在本文中,我们研究了自适应压缩策略,其中要压缩的矢量值测量的序列有噪声,而压缩变量本身有噪声。优化标准是信息增益。在顺序标量压缩的情况下,贪婪地最大化每级信息增益的单位范数压缩矢量是先验误差协方差矩阵的特征向量,而贪心策略则根据后协方差矩阵的特征值选择它们。这些特征值取决于所有先前的压缩,并且是递归计算的。针对压缩向量的平均范数的约束,给出了针对最优压缩策略的充水解决方案,该策略可使净信息增益最大化。我们提供了充分的条件,在这种情况下,从最大化净信息增益的角度来看,用于最大化逐步信息增益的贪婪策略实际上是最佳的。在标量压缩的情况下,我们的示例和仿真结果表明,当噪声序列为白色时,贪婪策略可能非常接近最优。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号