首页> 外文期刊>Information Theory, IEEE Transactions on >Compression Limits for Random Vectors with Linearly Parameterized Second-Order Statistics
【24h】

Compression Limits for Random Vectors with Linearly Parameterized Second-Order Statistics

机译:具有线性参数化二阶统计量的随机向量的压缩极限

获取原文
获取原文并翻译 | 示例

摘要

The class of complex random vectors whose covariance matrix is linearly parameterized by a basis of Hermitian Toeplitz (HT) matrices is considered, and the maximum compression ratios that preserve all second-order information are derived-the statistics of the uncompressed vector must be recoverable from a set of linearly compressed observations. This kind of vectors arises naturally when sampling wide-sense stationary random processes and features a number of applications in signal and array processing. Explicit guidelines to design optimal and nearly optimal schemes operating both in a periodic and nonperiodic fashion are provided by considering two of the most common linear compression schemes, which we classify as dense or sparse. It is seen that the maximum compression ratios depend on the structure of the HT subspace containing the covariance matrix of the uncompressed observations. Compression patterns attaining these maximum ratios are found for the case without structure as well as for the cases with circulant or banded structure. Universal samplers are also proposed to compress unknown HT subspaces.
机译:考虑通过Hermitian Toeplitz(HT)矩阵对协方差矩阵进行线性参数化的一类复杂随机向量,并推导出保留所有二阶信息的最大压缩比-未压缩向量的统计量必须可从一组线性压缩的观测值。当对广义的平稳随机过程进行采样时,这种矢量自然会出现,并且在信号和数组处理中具有许多应用。通过考虑两种最常见的线性压缩方案(我们归类为密集型或稀疏型),提供了设计以周期和非周期方式运行的最佳方案和近乎最佳方案的明确指南。可以看出,最大压缩率取决于包含未压缩观测值协方差矩阵的HT子空间的结构。对于没有结构的情况以及具有循环或带状结构的情况,发现达到这些最大比率的压缩模式。还提出了通用采样器来压缩未知的HT子空间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号