首页> 外文期刊>IEEE Transactions on Information Theory >Symmetric Private Information Retrieval from MDS Coded Distributed Storage With Non-Colluding and Colluding Servers
【24h】

Symmetric Private Information Retrieval from MDS Coded Distributed Storage With Non-Colluding and Colluding Servers

机译:使用非冲突和共谋服务器从MDS编码的分布式存储中对称私有信息检索

获取原文
获取原文并翻译 | 示例

摘要

A user wants to retrieve a file from a database without revealing the identity of the file retrieved to the operator of the database (server), which is known as the problem of private information retrieval (PIR). If it is further required that the user obtains no information about the other files in the database, the concept of symmetric PIR (SPIR) is introduced to guarantee privacy for both parties. For SPIR, the server(s) need to access some randomness independent of the database, to protect the content of undesired files from the user. The information-theoretic capacity of SPIR is defined as the maximum number of information bits of the desired file retrieved per downloaded bit. In this paper, the problem of SPIR is studied for a distributed storage system with N servers (nodes), where all data (including the files and the randomness) are stored in a distributed way. Specifically, the files are stored by an (N, K-C)-MDS storage code. The randomness is distributedly stored such that any K-C servers store independent randomness information. We consider two scenarios regarding to the ability of the storage nodes to cooperate. In the first scenario considered, the storage nodes do not communicate or collude. It is shown that the SPIR capacity for MDS-coded storage (hence called MDS-SPIR) is 1 - K-C/N, when the amount of the total randomness of distributed nodes (unavailable at the user) is at least K-C/N-K-C times the file size. Otherwise, the MDS-SPIR capacity equals zero. The second scenario considered is the T-colluding SPIR problem (hence called TSPIR). Specifically, any T out of N servers may collude, that is, they may communicate their interactions with the user to guess the identity of the requested file. In the special case with K-C = 1, i.e., the database is replicated at each node, the capacity of TSPIR is shown to be 1 - T/N, with the ratio of the total randomness size relative to the file size be at least T/N-T. For TSPIR with MDS-coded storage (called MDS-TSPIR for short), when restricted to schemes with additive randomness where the servers add the randomness to the answers regardless of the queries received, the capacity is proved to equal 1 - K-C+T-1/N, with total randomness at least K-C+T-1/N-K-C-T+1 times the file size. The MDS-TSPIR capacity for general schemes remains an open problem.
机译:用户希望从数据库中检索文件而不向数据库(服务器)的操作员透露所检索文件的身份,这被称为私人信息检索(PIR)问题。如果进一步要求用户不获取有关数据库中其他文件的信息,则引入对称PIR(SPIR)概念以确保双方的隐私。对于SPIR,服务器需要访问一些独立于数据库的随机性,以保护用户不需要的文件内容。 SPIR的信息理论容量定义为每个下载位检索到的所需文件的信息位的最大数量。本文研究了具有N个服务器(节点)的分布式存储系统的SPIR问题,其中所有数据(包括文件和随机性)都以分布式方式存储。具体来说,文件是由(N,K-C)-MDS存储代码存储的。随机性被分布式存储,使得任何K-C服务器都存储独立的随机性信息。我们考虑两种有关存储节点协作能力的方案。在考虑的第一种情况下,存储节点不进行通信或串通。结果表明,当分布式节点的总随机性的数量(用户不可用)至少为KC / NKC乘以MDS编码的存储(因此称为MDS-SPIR)时,SPIR容量为1-KC / N。文件大小。否则,MDS-SPIR容量等于零。考虑的第二种情况是T冲突SPIR问题(因此称为TSPIR)。具体而言,N个服务器中的任何T个都可能会合谋,也就是说,它们可能会与用户进行交互以猜测请求文件的身份。在特殊情况下,KC = 1,即在每个节点上复制数据库,TSPIR的容量显示为1-T / N,总随机大小与文件大小之比至少为T / NT。对于具有MDS编码存储的TSPIR(简称为MDS-TSPIR),当限于具有加性随机性的方案时,无论接收到的查询如何,服务器都将随机性添加到答案中,则容量被证明等于1-K-C + T-1 / N,总随机性至少是文件大小的K-C + T-1 / NKC-T + 1倍。通用方案的MDS-TSPIR能力仍然是一个悬而未决的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号