首页> 外文期刊>Information Forensics and Security, IEEE Transactions on >Sensor Pattern Noise Estimation Based on Improved Locally Adaptive DCT Filtering and Weighted Averaging for Source Camera Identification and Verification
【24h】

Sensor Pattern Noise Estimation Based on Improved Locally Adaptive DCT Filtering and Weighted Averaging for Source Camera Identification and Verification

机译:基于改进的局部自适应DCT滤波和加权平均的传感器模式噪声估计,用于源摄像机的识别和验证

获取原文
获取原文并翻译 | 示例

摘要

Photo response non-uniformity (PRNU) noise is a sensor pattern noise characterizing the imaging device. It has been broadly used in the literature for source camera identification and image authentication. The abundant information that the sensor pattern noise carries in terms of the frequency content makes it unique, and hence suitable for identifying the source camera and detecting image forgeries. However, the PRNU extraction process is inevitably faced with the presence of image-dependent information as well as other non-unique noise components. To reduce such undesirable effects, researchers have developed a number of techniques in different stages of the process, i.e., the filtering stage, the estimation stage, and the post-estimation stage. In this paper, we present a new PRNU-based source camera identification and verification system and propose enhancements in different stages. First, an improved version of the locally adaptive discrete cosine transform filter is proposed in the filtering stage. In the estimation stage, a new weighted averaging technique is presented. The post-estimation stage consists of concatenating the PRNUs estimated from color planes in order to exploit the presence of physical PRNU components in different channels. Experimental results on two image data sets acquired by various camera devices have shown a significant gain obtained with the proposed enhancements in each stage as well as the superiority of the overall system over related state-of-the-art systems.
机译:光响应非均匀性(PRNU)噪声是表征成像设备的传感器图案噪声。在文献中已广泛使用它来进行源摄像机识别和图像认证。传感器模式噪声在频率内容方面携带的大量信息使其具有唯一性,因此适合于识别源摄像机和检测图像伪造。但是,PRNU提取过程不可避免地面临着依赖图像的信息以及其他非唯一噪声成分的存在。为了减少这种不良影响,研究人员在该过程的不同阶段,即过滤阶段,估计阶段和后估计阶段,开发了许多技术。在本文中,我们提出了一个新的基于PRNU的源摄像机识别和验证系统,并提出了不同阶段的增强功能。首先,在滤波阶段提出了局部自适应离散余弦变换滤波器的改进版本。在估计阶段,提出了一种新的加权平均技术。后估计阶段包括级联从色彩平面估计的PRNU,以便利用不同通道中物理PRNU组件的存在。由各种相机设备获取的两个图像数据集的实验结果显示,通过在每个阶段中提出的增强功能以​​及整个系统相对于相关最新技术的优越性,都获得了可观的收益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号