首页> 外文期刊>Image Processing, IEEE Transactions on >Object Detection With DoG Scale-Space: A Multiple Kernel Learning Approach
【24h】

Object Detection With DoG Scale-Space: A Multiple Kernel Learning Approach

机译:使用DoG尺度空间进行对象检测:一种多核学习方法

获取原文
获取原文并翻译 | 示例

摘要

Difference of Gaussians (DoG) scale-space for an image is a significant way to generate features for object detection and classification. While applying DoG scale-space features for object detection/classification, we face two inevitable issues: dealing with high-dimensional data and selecting/weighting of proper scales. The scale selection process is mostly ad-hoc to present. In this paper, we propose a multiple kernel learning (MKL) method for both DoG scale selection/weighting and dealing with high-dimensional scale-space data. We design a novel shift invariant kernel function for DoG scale-space. To select only the useful scales in the DoG scale-space, a novel framework of MKL is also proposed. We utilize a 1-norm support vector machine (SVM) in the MKL optimization problem for sparse weighting of scales from DoG scale-space. The optimized data-dependent kernel accommodates only a few scales that are most discriminatory according to the large margin principle. With a 2-norm SVM, this learned kernel is applied to a challenging detection problem in oil sand mining: to detect large lumps in oil sand videos. We tested our method on several challenging oil sand data sets. Our method yields encouraging results on these difficult-to-process images and compares favorably against other popular multiple kernel methods.
机译:图像的高斯(DoG)比例空间差异是生成用于对象检测和分类的特征的重要方法。在将DoG尺度空间特征应用于对象检测/分类时,我们面临两个不可避免的问题:处理高维数据和选择/加权合适的尺度。标尺选择过程主要是临时性的。在本文中,我们提出了一种用于DoG尺度选择/加权以及处理高维尺度空间数据的多核学习(MKL)方法。我们为DoG尺度空间设计了一种新颖的移位不变核函数。为了仅在DoG尺度空间中选择有用的尺度,还提出了MKL的新颖框架。在MKL优化问题中,我们利用1-范数支持向量机(SVM)从DoG尺度空间对尺度进行稀疏加权。根据大余量原理,经过优化的与数据相关的内核只能容纳几个最有区别的尺度。借助2范数SVM,该博学的内核被应用于油砂开采中一个具有挑战性的检测问题:检测油砂视频中的大块。我们在几个具有挑战性的油砂数据集上测试了我们的方法。我们的方法在这些难以处理的图像上产生令人鼓舞的结果,并且与其他流行的多核方法相比具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号