首页> 外文期刊>Image Processing, IEEE Transactions on >Efficient Object Tracking by Incremental Self-Tuning Particle Filtering on the Affine Group
【24h】

Efficient Object Tracking by Incremental Self-Tuning Particle Filtering on the Affine Group

机译:通过仿射组上的增量自调整粒子滤波进行有效的对象跟踪

获取原文
获取原文并翻译 | 示例

摘要

We propose an incremental self-tuning particle filtering (ISPF) framework for visual tracking on the affine group, which can find the optimal state in a chainlike way with a very small number of particles. Unlike traditional particle filtering, which only relies on random sampling for state optimization, ISPF incrementally draws particles and utilizes an online-learned pose estimator (PE) to iteratively tune them to their neighboring best states according to some feedback appearance-similarity scores. Sampling is terminated if the maximum similarity of all tuned particles satisfies a target-patch similarity distribution modeled online or if the permitted maximum number of particles is reached. With the help of the learned PE and some appearance-similarity feedback scores, particles in ISPF become “smart” and can automatically move toward the correct directions; thus, sparse sampling is possible. The optimal state can be efficiently found in a step-by-step way in which some particles serve as bridge nodes to help others to reach the optimal state. In addition to the single-target scenario, the “smart” particle idea is also extended into a multitarget tracking problem. Experimental results demonstrate that our ISPF can achieve great robustness and very high accuracy with only a very small number of particles.
机译:我们提出了一种用于仿射组上视觉跟踪的增量自调整粒子滤波(ISPF)框架,该框架可以以链状方式找到数量很少的最优状态。与仅依靠随机采样进行状态优化的传统粒子滤波不同,ISPF增量抽取粒子,并利用在线学习的姿态估计器(PE)根据一些反馈外观相似度得分将其迭代地调整到其相邻的最佳状态。如果所有调整后的粒子的最大相似度都满足在线建模的目标补丁相似度分布,或者达到了允许的最大粒子数,则终止采样。借助学习到的PE和一些外观相似性反馈评分,ISPF中的粒子变得“智能”并可以自动朝正确的方向移动;因此,可以进行稀疏采样。可以以逐步的方式有效地找到最佳状态,其中某些粒子充当桥接节点,以帮助其他粒子达到最佳状态。除了单目标方案外,“智能”粒子概念还扩展为多目标跟踪问题。实验结果表明,我们的ISPF仅需极少量的颗粒就可以实现很高的鲁棒性和很高的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号