首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Multisensor data fusion using fuzzy concepts: application to land-cover classification using ERS-1/JERS-1 SAR composites
【24h】

Multisensor data fusion using fuzzy concepts: application to land-cover classification using ERS-1/JERS-1 SAR composites

机译:基于模糊概念的多传感器数据融合:在使用ERS-1 / JERS-1 SAR复合材料的土地覆盖分类中的应用

获取原文
获取原文并翻译 | 示例

摘要

A fuzzy-based multisensor data fusion classifier is developed and applied to land cover classification using ERS 1/JERS-1 SAR composites. This classifier aims at the integration of multisensor and contextual information in a single and a homogeneous framework. Initial fuzzy membership maps (FMMs) to different thematic classes are first calculated using classes and sensors a priori knowledge. These FMMs are then iteratively updated using spatial contextual information. A classification rule is associated to different iterations. This classifier has the following advantages: first, due to the use of fuzzy concepts, it has the flexibility of integrating multisensor/contextual and a priori information. Second, the classification results consist of thematic as well as confidence maps. The confidence map (a classification certainty map representing the degree of certainty in the thematic map) constitutes an important issue in order to evaluate the classification process complexity and the validity of the assumptions. The application of this classifier using ERS-1/JERS-1 SAR composites is shown to be promising.
机译:开发了基于模糊的多传感器数据融合分类器,并将其应用于使用ERS 1 / JERS-1 SAR复合材料的土地覆盖分类。该分类器旨在将多传感器和上下文信息集成在一个统一的框架中。首先使用类和传感器先验知识来计算不同主题类的初始模糊隶属关系图(FMM)。然后,使用空间上下文信息迭代更新这些FMM。分类规则与不同的迭代关联。该分类器具有以下优点:首先,由于使用了模糊概念,因此具有集成多传感器/上下文和先验信息的灵活性。其次,分类结果包括主题图和置信度图。置信图(表示主题图中确定程度的分类确定图)构成一个重要问题,目的是评估分类过程的复杂性和假设的有效性。这种使用ERS-1 / JERS-1 SAR复合材料的分类器的应用显示出了希望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号