首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >An Algorithm for Drop-Size Distribution Retrieval From GPM Dual-Frequency Precipitation Radar
【24h】

An Algorithm for Drop-Size Distribution Retrieval From GPM Dual-Frequency Precipitation Radar

机译:GPM双频降水雷达的液滴尺寸分布反演算法

获取原文
获取原文并翻译 | 示例

摘要

The dual-frequency precipitation radar onboard the Global Precipitation Measurement (GPM) core satellite has reflectivity measurements at two independent frequencies, i.e., Ku-band and Ka-band. Dual-frequency retrieval algorithms have been developed traditionally through forward, backward, and recursive approaches. However, these algorithms suffer from a “dual value” problem when they retrieve median volume diameter $D_{0}$ from a dual-frequency ratio (DFR) in the rain region. It has been shown in the literature that a linear constraint of the drop-size distribution along the rain profile is a reasonable assumption to avoid the “dual value” problem. In this paper, a hybrid method is proposed to retrieve DSDs by combining the forward method and the linear constraint. The forward method is applied to ice and melting ice regions, whereas the linear constraint is applied to the rain region. The method is evaluated using data-based simulation. Different error sources, including sensitivity of snow density, system bias, and attenuation from nonprecipitating particles, are considered. The hybrid method is compared with the surface reference with weak constraint method and the Hitschfeld–Bordan DFR method and shows reasonable comparisons, particularly for medium-to-heavy precipitation. Retrieval examples for Hurricane Earl are shown using the hybrid method.
机译:全球降水量测量(GPM)核心卫星上的双频降水雷达具有两个独立频率(即Ku波段和Ka波段)的反射率测量。传统上已经通过前向,后向和递归方法开发了双频检索算法。但是,当这些算法从雨区的双频比(DFR)检索中值体积直径$ D_ {0} $时,会遇到“双值”问题。在文献中已经表明,沿着降雨剖面的液滴大小分布的线性约束是避免“双重值”问题的合理假设。本文提出一种混合方法,通过结合前向方法和线性约束来检索DSD。正向方法适用于冰区和融冰区,而线性约束适用于雨区。使用基于数据的仿真评估该方法。考虑了不同的误差源,包括雪密度的敏感性,系统偏差和非沉淀颗粒的衰减。将该混合方法与采用弱约束方法的地面参考方法和Hitschfeld–Bordan DFR方法进行了比较,并显示出合理的比较结果,尤其是对于中到重度降水。使用混合方法显示了飓风伯爵的检索示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号