首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Optimal Tracking Design for Stochastic Fuzzy Systems
【24h】

Optimal Tracking Design for Stochastic Fuzzy Systems

机译:随机模糊系统的最优跟踪设计

获取原文
获取原文并翻译 | 示例

摘要

In general, fuzzy control design for stochastic nonlinear system is still a difficult work since the fuzzy bases are stochastic so as to increase the difficulty and complexity of the fuzzy tracking control design. In this study, a fuzzy stochastic moving-average model with control input (fuzzy ARMAX model) is introduced to describe nonlinear stochastic systems. From the fuzzy ARMAX model, a fuzzy one-step ahead prediction model is developed. Based on fuzzy one-step ahead prediction stochastic model, optimal design algorithms are proposed to achieve the optimal tracking of nonlinear stochastic systems. In this study, the minimum variance tracking control, generalized minimum variance tracking control, and the optimal model reference tracking control are developed for stochastic fuzzy systems. We construct some basic stability conditions for general stochastic fuzzy systems and use these conditions to verify the stability of the fuzzy tracking control systems. Finally, two simulation examples are given to indicate the performance of the proposed methods.
机译:总体上,由于模糊基础是随机的,所以随机非线性系统的模糊控制设计仍然是一项艰巨的工作,从而增加了模糊跟踪控制设计的难度和复杂性。在这项研究中,引入具有控制输入的模糊随机移动平均模型(模糊ARMAX模型)来描述非线性随机系统。从模糊的ARMAX模型,建立了模糊的一步法超前预测模型。基于模糊单步超前预测随机模型,提出了优化设计算法,实现了非线性随机系统的最优跟踪。在这项研究中,为随机模糊系统开发了最小方差跟踪控制,广义最小方差跟踪控制和最优模型参考跟踪控制。我们构造了一般随机模糊系统的一些基本稳定性条件,并利用这些条件验证了模糊跟踪控制系统的稳定性。最后,给出了两个仿真实例来说明所提方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号