首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Identification and control of dynamic systems using recurrent fuzzy neural networks
【24h】

Identification and control of dynamic systems using recurrent fuzzy neural networks

机译:基于递归模糊神经网络的动态系统辨识与控制

获取原文
获取原文并翻译 | 示例

摘要

Proposes a recurrent fuzzy neural network (RFNN) structure for identifying and controlling nonlinear dynamic systems. The RFNN is inherently a recurrent multilayered connectionist network for realizing fuzzy inference using dynamic fuzzy rules. Temporal relations are embedded in the network by adding feedback connections in the second layer of the fuzzy neural network (FNN). The RFNN expands the basic ability of the FNN to cope with temporal problems. In addition, results for the FNN-fuzzy inference engine, universal approximation, and convergence analysis are extended to the RFNN. For the control problem, we present the direct and indirect adaptive control approaches using the RFNN. Based on the Lyapunov stability approach, rigorous proofs are presented to guarantee the convergence of the RFNN by choosing appropriate learning rates. Finally, the RFNN is applied in several simulations (time series prediction, identification, and control of nonlinear systems). The results confirm the effectiveness of the RFNN.
机译:提出了一种递归模糊神经网络(RFNN)结构,用于识别和控制非线性动力系统。 RFNN本质上是一个循环多层连接器网络,用于使用动态模糊规则来实现模糊推理。通过在模糊神经网络(FNN)的第二层中添加反馈连接,将时间关系嵌入网络中。 RFNN扩展了FNN处理时间问题的基本能力。此外,FNN-模糊推理引擎,通用逼近和收敛分析的结果都扩展到了RFNN。对于控制问题,我们提出了使用RFNN的直接和间接自适应控制方法。基于Lyapunov稳定性方法,提出了严格的证明,以通过选择适当的学习率来保证RFNN的收敛性。最后,RFNN被应用于几种仿真(时间序列预测,识别和非线性系统控制)。结果证实了RFNN的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号