首页> 外文期刊>Fuzzy Systems, IEEE Transactions on >Hierarchical Cluster-Based Multispecies Particle-Swarm Optimization for Fuzzy-System Optimization
【24h】

Hierarchical Cluster-Based Multispecies Particle-Swarm Optimization for Fuzzy-System Optimization

机译:基于层次聚类的多物种粒子群算法的模糊系统优化

获取原文

摘要

This paper proposes a hierarchical cluster-based multispecies particle-swarm optimization (HCMSPSO) algorithm for fuzzy-system optimization. The objective of this paper is to learn Takagi–Sugeno–Kang (TSK) type fuzzy rules with high accuracy. In the HCMSPSO-designed fuzzy system (FS), each rule defines its own fuzzy sets, which implies that the number of fuzzy sets for each input variable is equal to the number of fuzzy rules. A swarm in HCMSPSO is clustered into multiple species at an upper hierarchical level, and each species is further clustered into multiple subspecies at a lower hierarchical level. For an FS consisting of $r$ rules, $r$ species (swarms) are formed in the upper level, where one species optimizes a single fuzzy rule. Initially, there are no species in HCMSPSO. An online cluster-based algorithm is proposed to generate new species (fuzzy rules) automatically. In the lower layer, subspecies within the same species are formed adaptively in each iteration during the particle update. Several simulations are conducted to verify HCMSPSO performance. Comparisons with other neural learning, genetic, and PSO algorithms demonstrate the superiority of HCMSPSO performance.
机译:针对模糊系统的优化问题,提出了一种基于层次聚类的多物种粒子群优化算法。本文的目的是要学习高准确度的Takagi–Sugeno–Kang(TSK)型模糊规则。在HCMSPSO设计的模糊系统(FS)中,每个规则定义了自己的模糊集,这意味着每个输入变量的模糊集的数量等于模糊规则的数量。 HCMSPSO中的一个群体在较高的层次级别上聚类为多个物种,每个物种在较低的层次上进一步聚类为多个亚种。对于由$ r $规则组成的FS,$ r $物种(群)在上层形成,其中一个物种优化单个模糊规则。最初,HCMSPSO中没有任何物种。提出了一种基于在线聚类的算法来自动生成新物种(模糊规则)。在较低的层中,在粒子更新期间的每次迭代中都自适应地形成相同物种内的亚种。进行了一些模拟,以验证HCMSPSO的性能。与其他神经学习,遗传算法和PSO算法的比较证明了HCMSPSO性能的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号