首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Multiobjective Investment Policy for a Nonlinear Stochastic Financial System: A Fuzzy Approach
【24h】

Multiobjective Investment Policy for a Nonlinear Stochastic Financial System: A Fuzzy Approach

机译:非线性随机金融系统的多目标投资策略:一种模糊方法

获取原文
获取原文并翻译 | 示例

摘要

The financial market always suffers from continuous and discontinuous (jump) changes and can be regarded as a nonlinear stochastic jump diffusion system. Most investors expect their investment policies to be not only higher benefits but also lower risk as a multiobjective optimization problem (MOP). In this study, a multiobjective H2 /H∞ fuzzy investment is proposed for nonlinear stochastic jump diffusion financial systems to achieve the desired target with minimum investment cost and risk in Pareto optimal sense, simultaneously. The Takagi-Sugeno (T-S) fuzzy model is used to approximate the nonlinear stochastic jump diffusion financial system to simplify the multiobjective H2 /H∞ investment policy design procedure. By the help of the T-S fuzzy model, the multiobjective H2 /H∞ fuzzy investment policy problem of nonlinear stochastic financial system can be transformed to a linear-matrix-inequality-constrained (LMI-constrained) MOP to avoid solving the annoying Hamilton-Jacobi inequalities. Because the LMI-constrained MOP is not easy to directly calculate its Pareto optimal solutions, an indirect method is proposed to solve this MOP for the multiobjective H2 /H∞ fuzzy investment policy design of nonlinear stochastic jump diffusion financial systems. An LMI-constrained multiobjective evolution algorithm (LMI-constrained MOEA) is also developed to efficiently solve the Pareto optimal solutions of the LMI-constrained MOP for the multiobjective H2 /H0', fuzzy investment policy design of nonlinear stochastic jump diffusion financial systems. When the Pareto optimal regulation solutions are solved by the proposed LMI-constrained MOEA, investors can select one investment policy to achieve their desired target with minimum investment cost and risk according to his/her own preference.
机译:金融市场总是遭受连续和不连续(跳跃)变化的影响,可以被视为非线性随机跳跃扩散系统。大多数投资者期望他们的投资政策作为多目标优化问题(MOP),不仅收益更高,而且风险更低。在这项研究中,针对非线性随机跳跃扩散金融系统,提出了一种多目标H2 /H∞模糊投资,以在最小的投资成本和帕累托最优意义上的风险下实现期望的目标。 Takagi-Sugeno(T-S)模糊模型用于近似非线性随机跳跃扩散金融系统,从而简化了多目标H2 /H∞投资策略的设计过程。借助TS模糊模型,可以将非线性随机金融系统的多目标H2 /H∞模糊投资策略问题转换为线性矩阵不等式约束(LMI约束)的MOP,以避免解决烦人的Hamilton-Jacobi不平等。由于受LMI约束的MOP不易直接计算其Pareto最优解,因此提出了一种间接方法来求解非线性随机跳跃扩散金融系统的多目标H2 /H∞模糊投资策略设计。还开发了LMI约束的多目标进化算法(LMI约束的MOEA),以有效地解决非线性随机跳跃扩散金融系统的多目标H2 / H0'模糊投资策略设计的LMI约束的MOP的Pareto最优解。当拟议的LMI约束的MOEA解决了帕累托最优监管解决方案时,投资者可以根据自己的喜好选择一种投资策略,以最小的投资成本和风险实现其期望的目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号