首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Multiobjective $H_{2}/H_{infty }$ Control Design of the Nonlinear Mean-Field Stochastic Jump-Diffusion Systems via Fuzzy Approach
【24h】

Multiobjective $H_{2}/H_{infty }$ Control Design of the Nonlinear Mean-Field Stochastic Jump-Diffusion Systems via Fuzzy Approach

机译:多目标 $ H_ {2} / H _ { infty} $ 非线性均值控制设计基于模糊方法的现场随机跳-扩散系统

获取原文
获取原文并翻译 | 示例

摘要

In this study, the multiobjective H-2/H-infinity fuzzy control design is investigated for nonlinear mean-field jump diffusion (MFSJD) systems for concurrently minimizing both H-2 and H-infinity performance. Since H-2 and H-infinity performance usually conflict with one another, the optimization problem that concurrently minimizes H-2 and H-infinity performance can be regarded as a dynamically constrained multiobjective optimization problem (MOP). Because Hamilton-Jacobi inequalities of the nonlinear MFSJD systems are difficult to derive, multiobjective H-2/H-infinity control design problems of nonlinear MFSJD system are difficult to solve. The Takagi-Sugeno fuzzy interpolation scheme and an indirect method are introduced to help transform the dynamically constrained MOP into linear matrix inequalities (LMIs) constrained MOP. Thus, one can accomplish the multiobjective H-2/H-infinity fuzzy control design via LMI-constrained multiobjective evolutionary algorithms (MOEAs). To efficiently solve the multiobjective H-2/H-infinity control design problem, we propose a novel LMI-constrained MOEA called fronts-squeezing. The fronts-squeezing LMI-constrained MOEA can concurrently search Pareto front from both sides of feasible and infeasible regions and narrow the search region down to increase efficiency. Finally, we present a simulation example about the multiobjective regulation of nonlinear MFSJD financial system to illustrate the design procedure and verify the proposed theories.
机译:在这项研究中,针对非线性均场跳跃扩散(MFSJD)系统研究了多目标H-2 / H无限模糊控制设计,以同时最小化H-2和H无限性能。由于H-2和H-infinity性能通常会相互冲突,因此同时使H-2和H-infinity性能最小化的优化问题可以视为动态约束多目标优化问题(MOP)。由于非线性MFSJD系统的汉密尔顿-雅各比不等式难以推导,因此非线性MFSJD系统的多目标H-2 / H无穷大控制设计问题难以解决。介绍了Takagi-Sugeno模糊插值方案和一种间接方法,以帮助将动态约束的MOP转换为线性矩阵不等式(LMI)约束的MOP。因此,可以通过LMI约束的多目标进化算法(MOEA)来完成H-2 / H无穷多目标模糊控制设计。为了有效地解决多目标H-2 / H无限控制设计问题,我们提出了一种新颖的LMI约束MOEA,称为前向压缩。紧缩LMI约束的MOEA可以从可行和不可行区域的两侧同时搜索Pareto前沿,并缩小搜索范围以提高效率。最后,我们给出一个关于非线性MFSJD金融系统多目标调节的仿真示例,以说明设计过程并验证所提出的理论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号