首页> 外文期刊>IEEE transactions on dependable and secure computing >Anonymization of Sensitive Quasi-Identifiers for l-Diversity and t-Closeness
【24h】

Anonymization of Sensitive Quasi-Identifiers for l-Diversity and t-Closeness

机译:l多样性和t紧密度的敏感拟标识符的匿名化

获取原文
获取原文并翻译 | 示例

摘要

A number of studies on privacy-preserving data mining have been proposed. Most of them assume that they can separate quasi-identifiers (QIDs) from sensitive attributes. For instance, they assume that address, job, and age are QIDs but are not sensitive attributes and that a disease name is a sensitive attribute but is not a QID. However, all of these attributes can have features that are both sensitive attributes and QIDs in practice. In this paper, we refer to these attributes as sensitive QIDs and we propose novel privacy models, namely, (l1, ... , lq)-diversity and (t1, ... , tq)-closeness, and a method that can treat sensitive QIDs. Our method is composed of two algorithms: An anonymization algorithm and a reconstruction algorithm. The anonymization algorithm, which is conducted by data holders, is simple but effective, whereas the reconstruction algorithm, which is conducted by data analyzers, can be conducted according to each data analyzer's objective. Our proposed method was experimentally evaluated using real data sets.
机译:已经提出了许多关于保护隐私的数据挖掘的研究。它们中的大多数假定它们可以将敏感标识符(QID)与敏感属性分开。例如,他们假设地址,工作和年龄是QID,但不是敏感属性,而疾病名称是敏感属性,但不是QID。但是,所有这些属性实际上都可以具有既是敏感属性又是QID的功能。在本文中,我们将这些属性称为敏感QID,并提出了新颖的隐私模型,即(l1,...,lq)-多样性和(t1,...,tq)-closeness,以及一种可以处理敏感的QID。我们的方法由两种算法组成:匿名算法和重构算法。由数据持有者执行的匿名化算法简单但有效,而可以根据每个数据分析器的目标进行由数据分析器进行的重构算法。我们提出的方法使用真实数据集进行了实验评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号