$1/f^{n}$ characteristics of ne'/> A Digitally Assisted, Signal Folding Neural Recording Amplifier
首页> 外文期刊>Biomedical Circuits and Systems, IEEE Transactions on >A Digitally Assisted, Signal Folding Neural Recording Amplifier
【24h】

A Digitally Assisted, Signal Folding Neural Recording Amplifier

机译:数字辅助信号折叠神经记录放大器

获取原文
获取原文并翻译 | 示例
           

摘要

A novel signal folding and reconstruction scheme for neural recording applications that exploits the $1/f^{n}$ characteristics of neural signals is described in this paper. The amplified output is ‘folded’ into a predefined range of voltages by using comparison and reset circuits along with the core amplifier. After this output signal is digitized and transmitted, a reconstruction algorithm can be applied in the digital domain to recover the amplified signal from the folded waveform. This scheme enables the use of an analog-to-digital convertor with less number of bits for the same effective dynamic range. It also reduces the transmission data rate of the recording chip. Both of these features allow power and area savings at the system level. Other advantages of the proposed topology are increased reliability due to the removal of pseudo-resistors, lower harmonic distortion and low-voltage operation. An analysis of the reconstruction error introduced by this scheme is presented along with a behavioral model to provide a quick estimate of the post reconstruction dynamic range. Measurement results from two different core amplifier designs in 65 nm and 180 nm CMOS processes are presented to prove the generality of the proposed scheme in the neural recording applications. Operating from a 1 V power supply, the amplifier in 180 nm CMOS has a gain of 54.2 dB, bandwidth of 5.7 kHz, input referred noise of 3.8 $mu V_{rms}$ and power dissipation of 2.52 $mu {rm W}$ leading to a NEF of 3.1 in spike band. It exhibits a dynamic range of 66 dB and maximum SNDR of 43 dB in LFP band. It also reduces system level power (by reducing the number of bits in the ADC by 2) as well as data rate to 80% of a conventional design. In vivo measurements validate the ability of t- is amplifier to simultaneously record spike and LFP signals.
机译:利用神经信号的 $ 1 / f ^ {n} $ 特征的神经记录应用的新型信号折叠和重构方案在本文中有描述。通过使用比较和复位电路以及核心放大器,将放大后的输出“折叠”到预定的电压范围内。在将该输出信号数字化并发送后,可以在数字域中应用重构算法,以从折叠波形中恢复放大的信号。对于相同的有效动态范围,该方案可以使用位数较少的模数转换器。它还降低了记录芯片的传输数据速率。这两个功能都可以在系统级节省功耗和面积。拟议拓扑的其他优势是由于消除了伪电阻而提高了可靠性,降低了谐波失真和实现了低电压运行。提出了对由该方案引入的重构误差的分析以及行为模型,以提供对重构后动态范围的快速估计。提出了两种不同的核心放大器设计在65 nm和180 nm CMOS工艺中的测量结果,以证明所提出的方案在神经记录应用中的普遍性。采用1 V电源供电,采用180 nm CMOS的放大器具有54.2 dB的增益,5.7 kHz的带宽,3.8的输入参考噪声。 {rms} $ 和2.52 $ mu {rm W} $ 的功耗导致尖峰带的NEF为3.1。它在LFP频段的动态范围为66 dB,最大SNDR为43 dB。它还将系统级功耗(通过将ADC中的位数减少2个)以及数据速率降低至传统设计的80%。体内测量验证了t-is放大器同时记录尖峰信号和LFP信号的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号