首页> 外文期刊>IEEE signal processing letters >Generating Image Distortion Maps Using Convolutional Autoencoders With Application to No Reference Image Quality Assessment
【24h】

Generating Image Distortion Maps Using Convolutional Autoencoders With Application to No Reference Image Quality Assessment

机译:使用卷积自动编码器生成图像失真图,并应用于无参考图像质量评估

获取原文
获取原文并翻译 | 示例

摘要

We present two contributions in this work: 1) a reference-free image distortion map generating algorithm for spatially localizing distortions in a natural scene; and 2) no reference image quality assessment (NRIQA) algorithms derived from the generated distortion map. We use a convolutional autoencoder (CAE) for distortion map generation. We rely on distortion maps generated by the SSIM image quality assessment algorithm as the “ground truth” for training the CAE. We train the CAE on a synthetically generated dataset composed of pristine images and their distorted versions. Specifically, the dataset was created by applying standard distortions such as JPEG compression, JP2K compression, additive white Gaussian noise, and blur to the pristine images. SSIM maps are then generated on a per distorted image basis for each of the distorted images in the dataset and are in turn used for training the CAE. We first qualitatively demonstrate the robustness of the proposed distortion map generation algorithm over several images with both traditional and authentic distortions. We also demonstrate the distortion map's effectiveness quantitatively on both standard distortions and authentic distortions by deriving three different NRIQA algorithms. We show that these NRIQA algorithms deliver competitive performance over traditional databases like LIVE Phase II, CSIQ, TID 2013, LIVE MD, and MDID 2013, and databases with authentic distortions like LIVE Wild and KonIQ-10K. In summary, the proposed method generates high-quality distortion maps that are used to design robust NRIQA algorithms. Furthermore, the CAE-based distortion maps generation method can easily be modified to work with other ground truth distortion maps.
机译:我们在这项工作中提出了两个贡献:1)无参考图像失真图生成算法,用于在自然场景中对失真进行空间定位; 2)没有从生成的失真图得出的参考图像质量评估(NRIQA)算法。我们使用卷积自动编码器(CAE)生成失真图。我们将SSIM图像质量评估算法生成的失真图作为训练CAE的“基本事实”。我们在由原始图像及其变形版本组成的合成数据集上训练CAE。具体来说,数据集是通过对原始图像应用JPEG压缩,JP2K压缩,加性高斯白噪声和模糊等标准失真而创建的。然后,针对每个扭曲图像为数据集中的每个扭曲图像生成SSIM映射,然后将其用于训练CAE。我们首先从质性上证明了所提出的失真图生成算法在具有传统失真和真实失真的多个图像上的鲁棒性。我们还通过推导三种不同的NRIQA算法,定量证明了失真图在标准失真和真实失真上的有效性。我们证明,与传统数据库(如LIVE Phase II,CSIQ,TID 2013,LIVE MD和MDID 2013)以及具有真实失真(如LIVE Wild和KonIQ-10K)的数据库相比,这些NRIQA算法具有竞争优势。总而言之,所提出的方法会生成高质量的失真图,用于设计鲁棒的NRIQA算法。此外,基于CAE的失真图生成方法可以轻松地修改为与其他地面真实失真图一起使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号