首页> 外文期刊>Robotics & Automation Magazine, IEEE >Physical Human-Robot Interaction: Mutual Learning and Adaptation
【24h】

Physical Human-Robot Interaction: Mutual Learning and Adaptation

机译:人机交互:相互学习与适应

获取原文
获取原文并翻译 | 示例

摘要

Close physical interaction between robots and humans is a particularly challenging aspect of robot development. For successful interaction and cooperation, the robot must have the ability to adapt its behavior to the human counterpart. Based on our earlier work, we present and evaluate a computationally efficient machine learning algorithm that is well suited for such close-contact interaction scenarios. We show that this algorithm helps to improve the quality of the interaction between a robot and a human caregiver. To this end, we present two human-in-the-loop learning scenarios that are inspired by human parenting behavior, namely, an assisted standing-up task and an assisted walking task.
机译:机器人与人之间的紧密物理交互是机器人开发中特别具有挑战性的方面。为了成功进行交互和合作,机器人必须具有使其行为适应人类对手的能力。基于我们的早期工作,我们提出并评估了一种高效计算的机器学习算法,该算法非常适合此类紧密接触的交互场景。我们证明了该算法有助于提高机器人与看护人之间交互的质量。为此,我们提出了两个受人为人父母行为启发的人在环学习场景,即辅助站立任务和辅助步行任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号