首页> 外文期刊>IEEE Robotics and Automation Letters >PTP: Parallelized Tracking and Prediction With Graph Neural Networks and Diversity Sampling
【24h】

PTP: Parallelized Tracking and Prediction With Graph Neural Networks and Diversity Sampling

机译:PTP:具有图形神经网络和多样性采样的并行化跟踪和预测

获取原文
获取原文并翻译 | 示例

摘要

Multi-object tracking (MOT) and trajectory prediction are two critical components in modern 3D perception systems that require accurate modeling of multi-agent interaction. We hypothesize that it is beneficial to unify both tasks under one framework in order to learn a shared feature representation of agent interaction. Furthermore, instead of performing tracking and prediction sequentially which can propagate errors from tracking to prediction, we propose a parallelized framework to mitigate the issue. Also, our parallel track-forecast framework incorporates two additional novel computational units. First, we use a feature interaction technique by introducing Graph Neural Networks (GNNs) to capture the way in which agents interact with one another. The GNN is able to improve discriminative feature learning for MOT association and provide socially-aware contexts for trajectory prediction. Second, we use a diversity sampling function to improve the quality and diversity of our forecasted trajectories. The learned sampling function is trained to efficiently extract a variety of outcomes from a generative trajectory distribution and helps avoid the problem of generating duplicate trajectory samples. We evaluate on KITTI and nuScenes datasets showing that our method with socially-aware feature learning and diversity sampling achieves new state-of-the-art performance on 3D MOT and trajectory prediction. Project website is: http://www.xinshuoweng.com/projects/PTP.
机译:多对象跟踪(MOT)和轨迹预测是现代3D感知系统中的两个关键组件,需要精确建模多代理交互。我们假设统一两个框架下的任务是有益的,以便学习代理交互的共享特征表示。此外,代替顺序执行跟踪和预测,其可以将误差传播到跟踪到预测,我们提出了一种并行化框架来减轻问题。此外,我们的并行轨道预测框架包含两种额外的新型计算单元。首先,我们通过介绍图形神经网络(GNN)来捕获代理彼此交互的方式来使用特征交互技术。 GNN能够改善MOT关联的鉴别特征学习,并提供用于轨迹预测的社会知识上下文。其次,我们使用多样性采样功能来提高我们预测轨迹的质量和多样性。学习的采样功能训练,以有效地从生成轨迹分布中提取各种结果,并有助于避免产生重复轨迹样本的问题。我们在基蒂和NUSCENES数据集上评估了我们具有社会意识的特征学习和多样性采样的方法,实现了3D MOT和轨迹预测的新的最先进的性能。项目网站是:http://www.xinshuoweng.com/projects/ptp。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号