...
首页> 外文期刊>Micro, IEEE >Decoupled Control and Data Processing for Approximate Near-Threshold Voltage Computing
【24h】

Decoupled Control and Data Processing for Approximate Near-Threshold Voltage Computing

机译:解耦控制和数据处理,用于近似阈值电压计算

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Near-threshold voltage computing can significantly improve energy efficiency; however, both operating speed and resilience to parametric variation reduce as the operating voltage reaches the threshold voltage. To prevent degradation in throughput performance, more cores should contribute to computation. The corresponding expansion in the chip area, however, is likely to further exacerbate the already intensified vulnerability to variation. Variation itself results in slower cores and ample speed differences among the cores. Worse, variation-induced slowdown might prevent operation at the designated clock speed, leading to timing errors. In this article, the authors exploit the intrinsic error tolerance of emerging Recognition, Mining, and Synthesis applications to mitigate variation. RMS applications can tolerate errors emanating from data-intensive program phases as opposed to control. Accordingly, the authors reserve reliable cores for control, and they execute error-tolerant data-intensive phases on error-prone cores. They also provide a design space exploration for decoupled control and data processing to mitigate variation at near-threshold voltages.
机译:近阈值电压计算可以显着提高能源效率;但是,随着工作电压达到阈值电压,工作速度和对参数变化的恢复力都会降低。为防止吞吐量性能下降,更多的内核应有助于计算。然而,芯片面积的相应扩展可能会进一步加剧本已加剧的变异性。变化本身会导致速度较慢的核心以及核心之间的足够大的速度差异。更糟糕的是,由变化引起的减速可能会阻止以指定的时钟速度运行,从而导致时序错误。在本文中,作者利用新兴的Recognition,Mining和Synthesis应用程序的固有错误容忍能力来减轻变异。 RMS应用程序可以容忍数据密集型程序阶段(而不是控制)所产生的错误。因此,作者保留了可靠的内核用于控制,并且他们在容易出错的内核上执行了容错的数据密集型阶段。它们还提供了用于解耦控制和数据处理的设计空间探索,以减轻接近阈值电压时的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号