首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >An Iterative Feedback-Based Change Detection Algorithm for Flood Mapping in SAR Images
【24h】

An Iterative Feedback-Based Change Detection Algorithm for Flood Mapping in SAR Images

机译:基于迭代反馈的SAR图像洪水映射变化检测算法

获取原文
获取原文并翻译 | 示例

摘要

This letter proposes a novel algorithm for the unsupervised detection of flood mapping in synthetic aperture radar (SAR) images. In the literature, unsupervised change detection of SAR images mainly consists of two steps, i.e., first generating a difference image from two given images and then binarizing the difference image to produce the desired change map. Conventional change detection algorithms usually execute these two steps sequentially and separately. In contrast, our algorithm introduces the feedback of the obtained intermediate change maps into both generation and binarization of the difference image. More specifically, we adjust the weights of neighboring pixels in generating the difference image according to the intermediate change maps. With the fed-hack intermediate change maps, we also extend the conventional single binarizing threshold for all pixels of the difference image to threshold maps, i.e., two individual binarizing thresholds are defined for each pixel of the difference image and the threshold maps are adjusted accordingly. Due to such feedback of the intermediate change maps, we may obtain a better difference image and generate more precise change maps, which can surely be fed back again. This iterative execution of the above-mentioned generation and binarization of difference images is terminated when a predefined Markov energy function stops decreasing, i.e., it reaches a local minimum. Experiments with several SAR image data sets with floods show that our algorithm consistently outperforms several state-of-the-art algorithms.
机译:这封信提出了一种用于合成孔径雷达(SAR)图像中洪水地图无监督检测的新算法。在文献中,SAR图像的无监督变化检测主要包括两个步骤,即,首先从两个给定图像生成差异图像,然后对差异图像进行二值化以产生所需的变化图。常规的变化检测算法通常顺序且分别执行这两个步骤。相反,我们的算法将获得的中间变化图的反馈引入差异图像的生成和二值化。更具体地,我们根据中间变化图来调整在生成差分图像时相邻像素的权重。使用联邦黑客中间变化图,我们还将针对差异图像的所有像素的常规单一二值化阈值扩展到阈值图,即,为差异图像的每个像素定义了两个单独的二值化阈值,并相应地调整了阈值图。由于中间变化图的这种反馈,我们可以获得更好的差异图像并生成更精确的变化图,可以肯定地将其反馈。当预定义的马尔可夫能量函数停止减小,即达到局部最小值时,终止上述差分图像的生成和二值化的迭代执行。对带有泛洪的多个SAR图像数据集进行的实验表明,我们的算法始终优于几种最新算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号