首页> 外文期刊>Heat Transfer Engineering >Cooling Penetration into Normal and Injured Brain via Intraparenchymal Brain Cooling Probe: Theoretical Analyses
【24h】

Cooling Penetration into Normal and Injured Brain via Intraparenchymal Brain Cooling Probe: Theoretical Analyses

机译:通过实质内脑冷却探针冷却对正常和受伤的脑部的渗透:理论分析

获取原文
获取原文并翻译 | 示例
       

摘要

The selective cooling of severely injured brain tissue while maintaining normal temperature throughout the remaining body, to avoid cooling-related systemic side effects, has been proposed as a desirable method to improve the outcome of patients with acute brain catastrophes. One approach for targeted brain cooling may utilize miniature cooling probes directly inserted into injured brain tissue. Based on experimental data obtained in primates with normal and injured brains, this study simulates the expected temperature distributions surrounding a prototype brain cooling probe. Our model employs the Pennes bioheat equation to define the effects of local brain perfusion rate on the temperature field within brain tissue. Cooling penetration achieved by this probe under normal and globally ischemic conditions extended from 10 mm to 25 mm, respectively, from the device surface into the surrounding brain parenchyma, and was strongly dependent on the local brain perfusion, with a larger cooling penetration being obtained in injured (less perfused) brain regions. Further, the simulated results indicate that transient brain temperature behavior is affected by both the initial perfusion rate and the blood perfusion response to tissue cooling. Assuming a constant local blood perfusion rate during cooling, our model predicts an established steady state temperature field within 16 min, though additional time may be needed if the blood perfusion rate keeps changing during the cooling. It is also concluded that the brain cooling rate monitored by a temperature sensor close to the device may not be the most accurate measure of cooling penetration, as this estimate neglects to consider key variables such as local blood perfusion rate, monitoring location, and time duration over which the cooling rate is calculated.
机译:已经提出,选择性冷却严重受伤的脑组织,同时保持整个其余身体的正常温度,以避免与冷却有关的全身性副作用,这是改善急性脑灾难患者预后的理想方法。一种有针对性的大脑冷却方法可以利用直接插入受伤的脑组织的微型冷却探针。基于在正常和受伤的大脑灵长类动物中获得的实验数据,本研究模拟了原型大脑冷却探针周围的预期温度分布。我们的模型采用Pennes生物热方程式来定义局部脑灌注速率对脑组织内温度场的影响。在正常和整体缺血情况下,该探头从设备表面到周围脑实质的冷却穿透深度分别从10 mm扩展到25 mm,并且强烈依赖于局部脑灌注,在这种情况下获得了更大的冷却穿透度。受伤(较少灌注)的大脑区域。此外,模拟结果表明,瞬时脑温行为受初始灌注率和对组织冷却的血液灌注反应的影响。假设在冷却过程中局部血液灌注速率恒定,我们的模型将在16分钟内建立一个稳定的稳态温度场,但是如果在冷却过程中血液灌注速率不断变化,则可能需要更多的时间。还得出结论,由靠近设备的温度传感器监视的大脑冷却速率可能不是冷却渗透的最准确度量,因为此估计忽略了考虑关键变量,例如局部血液灌注率,监测位置和持续时间以此计算冷却速度。

著录项

  • 来源
    《Heat Transfer Engineering》 |2008年第3期|p.284-294|共11页
  • 作者

    LIANG ZHU; AXEL J. ROSENGART;

  • 作者单位

    Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工业用热工设备;
  • 关键词

  • 入库时间 2022-08-18 00:19:45

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号