首页> 外文期刊>Heat Transfer Engineering >Application of Lubrication Theory and Study of Roughness Pitch During Laminar, Transition, and Low Reynolds Number Turbulent Flow at Microscale
【24h】

Application of Lubrication Theory and Study of Roughness Pitch During Laminar, Transition, and Low Reynolds Number Turbulent Flow at Microscale

机译:润滑理论的应用及层流,过渡和低雷诺数湍流微尺度下粗糙度的研究

获取原文
获取原文并翻译 | 示例
       

摘要

This work aims to experimentally examine the effects of different roughness structures on internal flows in high-aspect-ratio rectangular microchannels. Additionally, a model based on lubrication theory is compared to these results. In total, four experiments were designed to test samples with different relative roughness and pitch placed on the opposite sides forming the long faces of a rectangular channel. The experiments were conducted to study (ⅰ) sawtooth roughness effects in laminar flow, (ⅱ) uniform roughness effects in laminar flow, (ⅲ) sawtooth roughness effects in turbulent flow, and (ⅳ) varying-pitch sawtooth roughness effects in laminar flow. The Reynolds number was varied from 30 to 15,000 with degassed, deionized water as the working fluid. An estimate of the experimental uncertainty in the experimental data is 7.6% for friction factor and 2.7% for Reynolds number. Roughness structures varied from a lapped smooth surface with 0.2 μm roughness height to sawtooth ridges of height 117 μm. Hydraulic diameters tested varied from 198 μm to 2,349 μm. The highest relative roughness tested was 25%. The lubrication theory predictions were good for low relative roughness values. Earlier transition to turbulent flow was observed with roughness structures. Friction factors were predictable by the constricted flow model for lower pitch/height ratios. Increasing this ratio systematically shifted the results from the constricted-flow models to smooth-tube predictions. In the turbulent region, different relative roughness values converged on a single line at higher Reynolds numbers on anf-Re plot, but the converged value was dependent on the pitch of the roughness elements.
机译:这项工作旨在通过实验研究不同的粗糙度结构对高纵横比矩形微通道内部流动的影响。此外,将基于润滑理论的模型与这些结果进行了比较。总共设计了四个实验来测试具有不同相对粗糙度和间距的样品,这些样品放置在形成矩形通道长表面的相对侧上。进行实验以研究(ⅰ)层流中的锯齿粗糙度影响,(ⅱ)层流中的均匀粗糙度影响,(ⅲ)湍流中的锯齿粗糙度影响以及(ⅳ)层流中的变螺距锯齿粗糙度影响。雷诺数从30到15,000不等,以脱气的去离子水作为工作流体。实验数据中的实验不确定性估计为摩擦因数为7.6%,雷诺数为2.7%。粗糙度结构从具有0.2μm粗糙度高度的研磨光滑表面到具有117μm高度的锯齿形脊变化。测试的水力直径从198μm到2,349μm不等。测试的最高相对粗糙度为25%。对于较低的相对粗糙度值,润滑理论的预测是好的。观察到具有粗糙结构的较早转变为湍流。摩擦因数可通过缩流模型针对较低的螺距/高度比进行预测。增加该比率会系统地将结果从收缩流模型转移到平滑管预测。在湍流区域中,在an-Re图上,不同的相对粗糙度值在较高的雷诺数下会聚在一条直线上,但会聚值取决于粗糙度元素的间距。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号