首页> 外文期刊>Geothermics >Thermal―hydrodynamic-chemical (THC) modeling based on geothermal field data
【24h】

Thermal―hydrodynamic-chemical (THC) modeling based on geothermal field data

机译:基于地热场数据的热-水力化学(THC)建模

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Data on fluid chemistry and rock mineralogy are evaluated for a number of geothermal fields located in the volcanic arc of Japan and Kamchatka, Russia, Common chemical characteristics are identified and used to define scenarios for detailed numerical modeling of coupled thermal-hydrodynarnic-chemical (THC) processes. The following scenarios of parental geothermal fluid upflow were studied: (1) single-phase conditions, 260℃ at the bottom ('Ogiri' type); (2) two-phase conditions, 300 ℃ at the bottom ('Hatchobaru' type); and (3) heat pipe conditions, 260℃ at the bottom ('Matsukawa' type). THC modeling for the single-phase upflow scenario shows wairakite, quartz, K-feld spar and chlorite formed as the principal secondary minerals in the production zone, and illite-smectite formed below 230℃. THC modeling of the two-phase upflow shows that quartz, K-feldspar (microcline), wairakite and calcite precipitate in the model as principal secondary minerals in the production zone. THC modeling of heat pipe conditions shows no significant secondary deposition of minerals (quartz, K-feldspar, zeolites) in the production zone. The influence of thermo-dynamic and kinetic parameters of chemical interaction, and of mass fluxes on mineral phase changes, was found to be significant, depending on the upflow regime. It was found that no parental geothermal fluid inflow is needed for zeolite precipitation, which occurs above 140℃ in saturated andesite, provided that the porosity is greater than 0.001. In contrast, quartz and K-feldspar precipitation may result in a significant porosity reduction over a hundred-year time scale under mass flux conditions, and complete fracture sealing will occur given sufficient time under either single-phase or two-phase upflow scenarios. A heat pipe scenario shows no significant porosity reduction due to lack of secondary mineral phase deposition.
机译:评估了日本和俄罗斯堪察加火山弧上许多地热田的流体化学和岩石矿物学数据,确定了共同的化学特征并将其用于定义热-水力-动力学-化学耦合(THC)的详细数值建模的方案)流程。研究了父母亲地热流体向上流动的以下情形:(1)单相条件,底部为260℃(“ Ogiri”型); (2)底部为300℃的两相条件(“ Hatchobaru”型); (3)热管条件,底部为260℃(“ Matsukawa”型)。对单相上溢情景进行的THC模拟表明,生产区内主要形成的次生矿物为怀拉克岩,石英,钾长石和绿泥石,而在230℃以下则形成了伊利石-蒙脱石。 THC对两相上流的建模显示,石英,钾长石(微晶),伟拉格岩和方解石在模型中作为主要的次生矿物沉淀。热管条件的THC建模显示在生产区域中没有明显的矿物(石英,钾长石,沸石)二次沉积。发现化学相互作用的热力学和动力学参数以及质量通量对矿物相变化的影响是显着的,具体取决于上流方式。研究发现,只要孔隙度大于0.001,沸石沉淀就不需要母体地热流体流入,在140℃以上的饱和安山岩中发生沸石沉淀。相反,在质量通量条件下,石英和钾长石的沉淀可能会在一百年的时间内显着降低孔隙率,并且在单相或两相上流情况下,如果有足够的时间,就会发生完全的裂缝封闭。热管方案显示,由于缺乏二次矿物相沉积,孔隙率没有显着降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号