首页> 外文期刊>Geotextiles and Geomembranes >On the determination of the chemical reduction factor for PET geogrids
【24h】

On the determination of the chemical reduction factor for PET geogrids

机译:关于PET土工格栅化学还原因子的确定

获取原文
获取原文并翻译 | 示例
       

摘要

Data from four samples of commercially available PET geogrids (made either of yarns or bars), which were measured by BAM or other institute, are analyzed to discuss the procedure and problems of determining the chemical reduction factor RFch associated with a certain service life. Estimates from Arrhenius extrapolation usually have very large statistical errors. The level of confidence must therefore be specified. A reliable estimate requires data from immersion tests below the glass transition temperature of PET. To extrapolate the time of reductions for each reduction factor at such low temperatures, one has to know the functional form of the mechanical degradation curve. It is shown how the degradation curve of the tensile strength may be obtained by determining the relation between increase in concentration of carboxyl end group (CEC) and decrease in tensile strength. Therefore, experimental studies to determine the chemical reduction factor should be accompanied by the measurements of the CEG concentration and the intrinsic viscosity. Furthermore, such measurements allow a non-ambiguous determination of the molecular mass. Hydrolytic molecular degradation will proceed continuously even at 20 °C with half-life of the inverse of the CEG concentration of 40-100 y. Nevertheless, small chemical reduction factors at a lifetime of 100 y are obtained with high level of confidence for materials with low initial CEG concentration and high molecular mass. This is shown by pooling data from samples with comparable CEG concentration, molecular mass and above all comparable intrinsic relation between increase in CEG concentration and decrease in strength. Therefore, the recommendation of ISO TR 20432, Table 2, for chemical reduction factors seems to be applicable to PET geogrids with index properties well below the one specified by the technical report. Whether these index properties are actually a sufficient condition to have small chemical reduction factors even at a very long service life is still an open question. The determination of chemical reduction factor should be based on aging experiments, at least for products with index properties close to the limiting values for the following reasons. (1) Even so standards are available, results of different laboratories on absolute values of CEG concentration and number averaged molecular mass differ to a certain extent. (2) Other factors, like crystallization, affect the mechanical degradation significantly. (3) There is no universally applicable form of the mechanical degradation curve.
机译:由BAM或其他机构测量的四个市售PET土工格栅(由纱或条制成)的数据进行了分析,以讨论确定与特定使用寿命相关的化学还原因子RFch的程序和问题。 Arrhenius外推法得出的估计值通常会有很大的统计误差。因此,必须指定置信度。一个可靠的估计需要在PET的玻璃化转变温度以下的浸没测试获得数据。为了推断在这种低温下每种还原因子的还原时间,必须知道机械降解曲线的功能形式。示出了如何通过确定羧基端基的浓度(CEC)的增加与拉伸强度的降低之间的关系来获得拉伸强度的劣化曲线。因此,为确定化学还原因子而进行的实验研究应伴随有CEG浓度和特性粘度的测量。此外,这样的测量允许明确地确定分子量。甚至在20°C时,水解分子降解也将持续进行,CEG浓度的倒数的半衰期为40-100 y。但是,对于初始CEG浓度低和分子量高的材料,可以在100 y的寿命内获得较小的化学还原因子。通过汇集来自具有可比的CEG浓度,分子质量以及最重要的是可比的CEG浓度增加和强度降低之间的内在联系的样品的数据来表明这一点。因此,ISO TR 20432表2中有关化学还原因子的建议似乎适用于折射率特性远低于技术报告指定的PET土工格栅。这些指标特性是否即使在很长的使用寿命内是否实际上就足以具有较小的化学还原因子,仍然是一个悬而未决的问题。化学还原因子的确定应基于老化试验,至少出于以下原因,至少对于指数特性接近极限值的产品。 (1)即使有这样的标准,不同实验室对CEG浓度的绝对值和数均分子量的结果仍存在一定程度的差异。 (2)其他因素,如结晶,会严重影响机械性能。 (3)机械降解曲线没有普遍适用的形式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号