首页> 外文期刊>Geophysics >STRESS SENSITIVITY OF SANDSTONES
【24h】

STRESS SENSITIVITY OF SANDSTONES

机译:砂岩的应力敏感性

获取原文
获取原文并翻译 | 示例
       

摘要

Our observations made on dry-sandstone ultrasonic velocity data relate to the variation in velocity (or modulus) with effective stress, and the ability to predict a velocity for a rock under one effective pressure when it is known only under a different effective pressure. We find that the sensitivity of elastic moduli, and velocities, to effective hydrostatic stress increases with decreasing porosity. Specifically, we calculate the difference be tween an elastic modulus, M(P-1, phi), of a sample of porosity phi at effective pressure P-1 and the same modulus. M(P-2, phi), at effective pressure P-2. If this difference, Delta M = M(P-1, phi) - M(P-2, phi), is plotted versus porosity for a suite of samples, then the scatter of Delta M is close to zero as porosity approaches the critical porosity value, and reaches its maximum as porosity approaches zero. The dependence of this scatter on porosity is close to linear. Critical porosity here is the porosity above which rock can exist only as a suspension-between 36% and 40% for sandstones. This stress-sensitivity pattern of grain-supported sandstones (clay content below 0.35) practically does not depend on clay content. In practical terms, the uncertainty of determining elastic moduli al a higher effective stress from the measurements at a lower effective stress is small at high porosity and increases with decreasing porosity. We explain this effect by using a combination of two heuristic models-the critical porosity model and the modified solid model. The former is based on the observation that the elastic-modulus-versus-porosity relation can be approximated by a straight line that connects two points in the modulus-porosity plane: the modulus of the solid phase at zero porosity and zero at critical porosity, The second one reflects the fact that at constant effective stress, low-porosity sandstones (even with small amounts of clay) exhibit large variability in elastic moduli. We attribute this variability to compliant cracks that hardly affect porosity but strongly affect the stiffness. The above qualitative observation helps to quantitatively constrain P- and S-wave velocities at varying stresses from a single measurement at a fixed stress. We also show that there are distinctive linear relations between Poisson's ratios (nu) of sandstone measured at two different stresses. For example, in consolidated medium-porosity sandstones nu(40) = 0.018 + 0.913 nu(20), where the subscripts indicate hydrostatic stress in MPa. Linear functions can also be used to relate the changes (with hydrostatic stress) in shear moduli to those in compressional moduli. For example, G(40) - G(20) = 0.084 + 0.344 (M(40) - M(20)), where G = rho V-S(2) is shear modulus and M = rho V-P(2) is compressional modulus. both in GPa. and the subscripts indicate stress in MPa. [References: 18]
机译:我们对干砂岩超声速度数据的观察结果涉及有效应力的速度(或模量)变化,以及仅在不同有效压力下才知道岩石在一个有效压力下的速度的能力。我们发现,弹性模量和速度对有效静水压力的敏感性随孔隙率的降低而增加。具体来说,我们计算出在有效压力P-1下孔隙率phi的样品的弹性模量M(P-1,phi)与相同模量之间的差。 M(P-2,phi),有效压力P-2。如果针对一组样品绘制了Delta M = M(P-1,phi)-M(P-2,phi)与孔隙率的差异,则当孔隙率接近临界值时,Delta M的散布接近于零孔隙率值,并在孔隙率接近零时达到最大值。该散射对孔隙率的依赖性接近线性。临界孔隙度是指孔隙度,在该孔隙度之上,岩石只能以悬浮状态存在-砂岩介于36%和40%之间。粒载砂岩(粘土含量低于0.35)的这种应力敏感性模式实际上并不取决于粘土含量。实际上,在较低的有效应力下通过测量确定弹性模量较高的有效应力的不确定性在高孔隙度时较小,并且随着孔隙率的降低而增加。我们通过结合使用两种启发式模型(临界孔隙度模型和改进的实体模型)来解释这种效果。前者基于以下观察结果:弹性模量与孔隙率关系可以通过将模量-孔隙率平面中的两个点连接起来的直线来近似:在零孔隙率时固相的模量和在临界孔隙率时为零的固相的模量,第二个事实反映了这样一个事实,即在恒定有效应力下,低孔隙度砂岩(即使粘土含量很少)在弹性模量方面也表现出很大的变化。我们将此差异归因于几乎不会影响孔隙率但会严重影响刚度的顺应性裂纹。上述定性观察有助于从固定应力下的单次测量定量地限制变化应力下的P波和S波速度。我们还表明,在两种不同应力下测得的砂岩泊松比(nu)之间存在明显的线性关系。例如,在固结的中孔隙度砂岩中,nu(40)= 0.018 + 0.913 nu(20),其中下标表示以MPa为单位的静水应力。线性函数也可以用于将剪切模量的变化(带有静水压力)与压缩模量的变化联系起来。例如,G(40)-G(20)= 0.084 + 0.344(M(40)-M(20)),其中G = rho VS(2)是剪切模量,M = rho VP(2)是压缩模量。均以GPa为单位。下标表示应力,单位为MPa。 [参考:18]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号