首页> 外文期刊>Geofluids >Salt tectonics and shallow subseafloor fluid convection: models of coupled fluid-heat-salt transport
【24h】

Salt tectonics and shallow subseafloor fluid convection: models of coupled fluid-heat-salt transport

机译:盐构造与浅层海底流体对流:流体-热-盐耦合传输模型

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Thermohaline convection associated with salt domes has the potential to drive significant fluid flow and mass and heat transport in continental margins, but previous studies of fluid flow associated with salt structures have focused on continental settings or deep flow systems of importance to petroleum exploration. Motivated by recent geophysical and geochemical observations that suggest a convective pattern to near-seafloor pore fluid flow in the northern Gulf of Mexico (GoMex), we devise numerical models that fully couple thermal and chemical processes to quantify the effects of salt geometry and seafloor relief on fluid flow beneath the seafloor. Steady-state models that ignore halite dissolution demonstrate that seafloor relief plays an important role in the evolution of shallow geothermal convection cells and that salt at depth can contribute a thermal component to this convection. The inclusion of faults causes significant, but highly localized, increases in flow rates at seafloor discharge zones. Transient models that include halite dissolution show the evolution of flow during brine formation from early salt-driven convection to later geothermal convection, characteristics of which are controlled by the interplay of seafloor relief and salt geometry. Predicted flow rates are on the order of a few millimeters per year or less for homogeneous sediments with a permeability of 10~(-15) m~2, comparable to compaction-driven flow rates. Sediment permeabilities likely fall below 10~(-15) m~2 at depth in the GoMex basin, but such thermohaline convection can drive pervasive mass transport across the seafloor, affecting sediment diagenesis in shallow sediments. In more permeable settings, such flow could affect methane hydrate stability, seafloor chemosynthetic communities, and the longevity of fluid seeps.
机译:与盐穹顶有关的热盐对流有可能驱动大陆边缘的大量流体流动以及传质和传热,但是先前与盐结构有关的流体流动的研究集中在大陆环境或对石油勘探很重要的深层流动系统上。受近期地球物理和地球化学观测的启发,该观测表明墨西哥湾北部(GoMex)近海底孔隙流体流动的对流模式,我们设计了数值模型,该模型将热过程和化学过程完全耦合在一起以量化盐几何形状和海底浮雕的影响海底下的流体流动。忽略盐岩溶解的稳态模型表明,海底浮雕在浅层地热对流池的演化中起着重要作用,而深层的盐可以为这种对流贡献热量。包含断层会导致海底排放区的流量显着但高度局部化。包括盐岩溶蚀的瞬变模型表明,盐水形成过程中的水流从早期的盐分驱动对流发展到后来的地热对流,其特征受海床浮雕和盐分几何形状的相互作用控制。对于渗透率为10〜(-15)m〜2的均质沉积物,预计流量约为每年几毫米或更小,与压实驱动流量相当。 GoMex盆地的深度泥沙渗透率很可能会低于10〜(-15)m〜2,但是这种热盐对流会推动整个海底的大量物质迁移,从而影响浅层沉积物中的成岩作用。在更具渗透性的环境中,这种流动可能会影响甲烷水合物的稳定性,海底化学合成群落以及流体渗流的寿命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号