...
首页> 外文期刊>Geofluids >Carbon dioxide controlled earthquake distribution pattern in the NW Bohemian swarm earthquake region, western Eger Rift, Czech Republic - gas migration in the crystalline basement
【24h】

Carbon dioxide controlled earthquake distribution pattern in the NW Bohemian swarm earthquake region, western Eger Rift, Czech Republic - gas migration in the crystalline basement

机译:捷克共和国西埃格里夫特西北波希米亚群地震区的二氧化碳控制地震分布模式-地下室的气体迁移

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The ascent of magmatic carbon dioxide in the western Eger (Ohe) Rift is interlinked with the fault systems of the Variscian basement. In the Cheb Basin, the minimum CO2 flux is about 160m(3)h(-1), with a diminishing trend towards the north and ceasing in the main epicentral area of the Northwest Bohemian swarm earthquakes. The ascending CO2 forms Ca-Mg-HCO3 type waters by leaching of cations from the fault planes and creates clay minerals, such as kaolinite, as alteration products on affected fault planes. These mineral reactions result in fault weakness and in hydraulically interconnected fault network. This leads to a decrease in the friction coefficient of the Coulomb failure stress (CFS) and to fault creep as stress build-up cannot occur in the weak segments. At the transition zone in the north of the Cheb Basin, between areas of weak, fluid conductive faults and areas of locked faults with frictional strength, fluid pressure can increase resulting in stress build-up. This can trigger strike-slip swarm earthquakes. Fault creep or movements in weak segments may support a stress build-up in the transition area by transmitting fluid pressure pulses. Additionally to fluid-driven triggering models, it is important to consider that fluids ascending along faults are CO2-supersaturated thus intensifying the effect of fluid flow. The enforced flow of CO2-supersaturated fluids in the transitional zone from high to low permeability segments through narrowings triggers gas exsolution and may generate pressure fluctuations. Phase separation starts according to the phase behaviour of CO2-H2O systems in the seismically active depths of NW Bohemia and may explain the vertical distribution of the seismicity. Changes in the size of the fluid transport channels in the fault systems caused, or superimposed, by fault movements, can produce fluid pressure increases or pulses, which are the precondition for triggering fluid-induced swarm earthquakes.
机译:西部埃格(Ohe)裂谷的岩浆二氧化碳上升与Variscian基底的断层系统相互联系。在Cheb盆地中,最小的CO2通量约为160m(3)h(-1),向北逐渐减少,西北波西米亚群地震的主要震中区逐渐减弱。上升的CO2通过从断层平面中浸出阳离子形成Ca-Mg-HCO3型水,并在受影响的断层平面上产生粘土矿物,例如高岭土,作为蚀变产物。这些矿物反应会导致断层薄弱和液压互连的断层网络。这会导致库仑破坏应力(CFS)的摩擦系数减小,并导致断层蠕变,因为在弱段中不会发生应力累积。在Cheb盆地北部的过渡带中,在弱的,流体导电断层区域和具有摩擦强度的锁定断层区域之间,流体压力会增加,从而导致应力积聚。这会触发走滑蜂群地震。断层中的蠕变或运动可能会通过传输流体压力脉冲来支持过渡区域内的应力累积。除了流体驱动的触发模型外,重要的是要考虑沿断层上升的流体是CO2过饱和的,因此会增强流体流动的影响。在从高渗透率段到低渗透率段的过渡带中,CO2过饱和流体通过变窄而强制流动会触发气体逸出并可能产生压力波动。相分离根据西北波西米亚地震活跃深度中的CO2-H2O系统的相行为而开始,并且可以解释地震活动的垂直分布。断层运动引起或叠加的断层系统中流体输送通道的尺寸变化会导致流体压力升高或脉动,这是引发流体诱发的群震的前提。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号