...
首页> 外文期刊>Geofluids >Fractured rock stress-permeability relationships from in situ data and effects of temperature and chemical-mechanical couplings
【24h】

Fractured rock stress-permeability relationships from in situ data and effects of temperature and chemical-mechanical couplings

机译:来自现场数据的断裂岩石应力-渗透率关系以及温度和化学-机械耦合的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The purpose of this paper is to (i) review field data on stress-induced permeability changes in fractured rock; (ii) describe estimation of fractured rock stress-permeability relationships through model calibration against such field data; and (iii) discuss observations of temperature and chemically mediated fracture closure and its effect on fractured rock permeability. The field data that are reviewed include in situ block experiments, excavation-induced changes in permeability around tunnels, borehole injection experiments, depth (and stress) dependent permeability, and permeability changes associated with a large-scale rock-mass heating experiment. Data show how the stress-permeability relationship of fractured rock very much depends on local in situ conditions, such as fracture shear offset and fracture infilling by mineral precipitation. Field and laboratory experiments involving temperature have shown significant temperature-driven fracture closure even under constant stress. Such temperature-driven fracture closure has been described as thermal overclosure and relates to better fitting of opposing fracture surfaces at high temperatures, or is attributed to chemically mediated fracture closure related to pressure solution (and compaction) of stressed fracture surface asperities. Back-calculated stress-permeability relationships from field data may implicitly account for such effects, but the relative contribution of purely thermal-mechanical and chemically mediated changes is difficult to isolate. Therefore, it is concluded that further laboratory and in situ experiments are needed to increase the knowledge of the true mechanisms behind thermally driven fracture closure, and to further assess the importance of chemical-mechanical coupling for the long-term evolution of fractured rock permeability.
机译:本文的目的是(i)回顾有关裂隙岩中应力引起的渗透率变化的现场数据; (ii)描述通过对此类现场数据进行模型校准来估算裂隙岩石的应力-渗透率关系; (iii)讨论温度和化学介导的裂缝闭合的观察及其对裂缝岩石渗透性的影响。审查的现场数据包括原位块试验,隧道周围渗透率的开挖引起的变化,钻孔注入实验,与深度(和应力)有关的渗透率以及与大规模岩体加热实验相关的渗透率变化。数据表明,压裂岩石的应力-渗透率关系如何很大程度上取决于局部原位条件,例如裂缝剪切偏移和矿物沉淀对裂缝的填充作用。涉及温度的现场和实验室实验表明,即使在恒定应力下,温度驱动的裂缝闭合效果也明显。这种由温度驱动的裂缝闭合被描述为热超闭合,并且涉及高温下相对的裂缝表面的更好拟合,或者归因于与应力裂缝表面凹凸不平的压力溶液(和压实)有关的化学介导的裂缝闭合。从现场数据反算的应力-渗透率关系可能隐含地解释了这种影响,但是纯热机械和化学介导的变化的相对贡献很难分离。因此,可以得出结论,需要进行进一步的实验室和现场实验,以增加对热驱动裂缝闭合背后真实机制的认识,并进一步评估化学-机械耦合对于裂缝岩渗透性长期演变的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号