首页> 外文期刊>Fuzzy sets and systems >Fuzzy finite automata and fuzzy regular expressions with membership values in lattice-ordered monoids
【24h】

Fuzzy finite automata and fuzzy regular expressions with membership values in lattice-ordered monoids

机译:格序半mono中的隶属值模糊有限自动机和模糊正则表达式

获取原文
获取原文并翻译 | 示例

摘要

We study fuzzy finite automata in which all fuzzy sets are defined by membership functions whose codomain forms a lattice-ordered monoid L. For these L-fuzzy finite automata (L-FFA, for short), we provide necessary and sufficient conditions for the extendability of the state-transition function. It is shown that nondeterministic L-FFA (N L-FFA, for short) are more powerful than deterministic L-FFA (D L-FFA, for short). Then, we give necessary and sufficient conditions for the simulation of an N L-FFA by an equivalent D L-FFA. Next, we turn to the closure properties of languages defined by L-FFAs: we establish closure under the regular operations and provide conditions for closure under intersection and reversal, in particular we show that the family of fuzzy languages accepted by D L-FFAs is not closed under Kleene closure operation, and the family of fuzzy languages accepted by N L-FFAs is not closed under complement operation. Furthermore, we introduce the notions of L-fuzzy regular expressions and give the Kleene theorem for N L-FFAs. The description of D L-FFAs by L-fuzzy regular expressions is also given. Finally, we investigate the level structures of L-FFAs. Our results provide some insight as to what extend properties of L-FFAs and their languages depend on the algebraic properties of L.
机译:我们研究了模糊有限自动机,其中所有模糊集均由隶属函数定义,该隶属函数的共域形成晶格有序的半定形L。对于这些L模糊有限自动机(简称L-FFA),我们提供了可扩展性的充要条件状态转换功能。结果表明,不确定L-FFA(简称L-FFA)比确定L-FFA(简称D-FFA)更强大。然后,我们给出了用等效的D-FFA模拟N-FFA的充要条件。接下来,我们转到由L-FFA定义的语言的闭包特性:我们在常规操作下建立闭包,并提供在相交和反转下闭包的条件,特别是,我们证明D L-FFA接受的模糊语言家族是在Kleene闭包操作下不会关闭,并且在补码操作下不会关闭N-FFA接受的模糊语言族。此外,我们介绍了L-模糊正则表达式的概念,并给出了N L-FFA的Kleene定理。还给出了由L-模糊正则表达式对D L-FFA的描述。最后,我们研究了L-FFA的水平结构。我们的结果为L-FFA及其语言的扩展属性取决于L的代数性质提供了一些见识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号