首页> 外文期刊>Future generation computer systems >Multi-feature fusion tracking algorithm based on generative compression network
【24h】

Multi-feature fusion tracking algorithm based on generative compression network

机译:基于生成压缩网络的多特征融合跟踪算法

获取原文
获取原文并翻译 | 示例

摘要

In order to solve the problem of inaccurate positioning in the process of target tracking due to illumination, scale change and occlusion, a correlation filtering tracking algorithm based on generate compression network is proposed. Firstly, the encoder is used to compress the high-dimensional depth features extracted from VGC16 network, and the soft quantizer reduces floating-point operation so that improves the operation speed. Secondly, the discriminator of generative adversarial network guides the encoder and generator to better compress and recover the original depth features by generating a discriminator against the network, so as to enhance the ability of the encoder to extract the key features of the target, then, the compressed depth features, gray features and hog features are combined to improve the ability of target representation. Thirdly, the correlation filter and PCA feature dimensionality reduction are used to complete the target precise location and discriminant scale estimation. The experimental results show that the tracking accuracy of the proposed algorithm is 87.1%, and the tracking rate is up to 70fps.
机译:为了解决由于照明,尺度变化和遮挡而在目标跟踪过程中定位不准确定位的问题,提出了一种基于生成压缩网络的相关滤波跟踪算法。首先,编码器用于压缩从VGC16网络中提取的高维深度特征,软量化器可减少浮点操作,从而提高操作速度。其次,生成的对抗网络的鉴别器引导编码器和发电机来更好地压缩并通过生成对网络的鉴别器来恢复原始深度特征,从而提高编码器提取目标的关键特征的能力,然后,组合压缩深度特征,灰色特征和猪特性以提高目标表示的能力。第三,相关滤波器和PCA特征维度降低用于完成目标精确的位置和判别级别估计。实验结果表明,所提出的算法的跟踪精度为87.1%,跟踪速率高达70fps。

著录项

  • 来源
    《Future generation computer systems》 |2021年第11期|206-214|共9页
  • 作者单位

    School of Electronic and Information Engineering Xi'an Technological University Xi'an 710021 China;

    School of Electronic and Information Engineering Xi'an Technological University Xi'an 710021 China;

    School of Electronic and Information Engineering Xi'an Technological University Xi'an 710021 China;

    School of Electronic and Information Engineering Xi'an Technological University Xi'an 710021 China;

    School of Electronic and Information Engineering Xi'an Technological University Xi'an 710021 China;

    School of Electronic and Information Engineering Xi'an Technological University Xi'an 710021 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Generative adversarial network; Feature compression; Correlation filter; Target tracking; Deep features;

    机译:生成的对抗网络;功能压缩;相关滤波器;目标跟踪;深度特色;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号