首页> 外文期刊>Future generation computer systems >High-quality face image generation using particle swarm optimization-based generative adversarial networks
【24h】

High-quality face image generation using particle swarm optimization-based generative adversarial networks

机译:使用基于粒子群优化的生成对抗网络的高质量脸部图像生成

获取原文
获取原文并翻译 | 示例

摘要

Face image generation based on generative adversarial networks (GAN) is a hot research topic in computer vision. Existing GAN-based algorithms are constrained by training instability and mode collapse. Considering that particle swarm optimization (PSO) algorithm has good global optimization ability, we propose a generation antagonism network based on PSO algorithm to improve the training stability. More specifically, the inertia weight of particle swarm is improved by using the parameters of particle representative generator network in particle swarm optimization, and the aggregation degree of particles is judged to ensure the optimization ability of particle swarm optimization and the diversity of population. In addition, we evaluate the performance of the generator by generating quality and diversity evaluation functions to better guide the iterative updating of particle swarm optimization. Our face image generation experiment is conducted on CelebA dataset and experimental result shows the effectiveness and robustness of our proposed method.
机译:基于生成的对抗性网络(GAN)的面部图像生成是计算机视觉中的热门研究主题。通过培训不稳定和模式崩溃来限制现有的基于GaN的算法。考虑到粒子群优化(PSO)算法具有良好的全球优化能力,我们提出了一种基于PSO算法的一代对抗网络来提高训练稳定性。更具体地,通过使用粒子群优化中的粒子代表发电机网络的参数来改善粒子群的惯性重量,并且判断粒子的聚集度以确保粒子群优化和群体的多样性的优化能力。此外,我们通过生成质量和分集评估功能来评估发电机的性能,以更好地指导粒子群优化的迭代更新。我们的脸部图像生成实验在Celeba数据集中进行,实验结果表明了我们所提出的方法的有效性和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号