首页> 外文期刊>Future generation computer systems >An evolutionary fuzzy scheduler for multi-objective resource allocation in fog computing
【24h】

An evolutionary fuzzy scheduler for multi-objective resource allocation in fog computing

机译:雾计算中多目标资源分配的进化模糊调度器

获取原文
获取原文并翻译 | 示例

摘要

With rapid development of the Internet of Things (IoT), a vast amount of raw data produced by IoT devices needs to be processed promptly. Compared to cloud computing, fog computing nodes are closer to data resource for decreasing the end-to-end transmission latency. Considering the limited resource of IoT devices, offloading computationally-intensive tasks to the servers with high computing capability is essential in the IoT-fog-cloud system to complete those tasks on time. In this work, we propose a fuzzy logical offloading strategy for IoT applications characterized by uncertain parameters to optimize both agreement index and robustness. A multi-objective Estimation of Distribution Algorithm (EDA) is designed to learn and optimize the fuzzy offloading strategy from a diversity of the applications. The algorithm partitions applications into independent clusters, so that each cluster can be allocated to the corresponding tier for further processing. Thus, system resources are saved by making scheduling decisions in a reduced search space. Simulation studies on benchmark problems and real-world cases are carried out to verify the efficiency of our proposed algorithm. Pareto sets produced by our algorithm outperformed classic heuristic solutions for 88.3% benchmark cases and dominated Pareto sets of two state-of-art multi-objective algorithms for 92.7% and 94.4% cases correspondingly.
机译:随着事物互联网的快速发展(IOT),需要及时处理由IoT设备产生的大量原始数据。与云计算相比,FOG计算节点更接近数据资源,以降低端到端传输延迟。考虑到物联网设备的有限资源,将具有高计算能力的服务器卸载到服务器的服务器在IoT-Fog-Cloud系统中是必不可少的,以便按时完成这些任务。在这项工作中,我们提出了一种模糊的逻辑卸载策略,可用于IOT应用程序,其特征在于不确定参数,以优化协议指数和鲁棒性。分发算法(EDA)的多目标估计旨在从应用程序的多样性学习和优化模糊卸载策略。该算法将应用程序分区为独立群集,以便可以将每个群集分配给相应的层进行进一步处理。因此,通过在减少的搜索空间中进行调度决策来保存系统资源。对基准问题和现实世界案例进行了仿真研究,以验证我们所提出的算法的效率。通过我们的算法生产的Pareto集,可实现88.3%的基准案例的经典启发式解决方案,并以每种最先进的多目标算法为主,相应地为92.7%和94.4%的案件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号