首页> 外文期刊>Future generation computer systems >An intelligent vehicle image segmentation and quality assessment model
【24h】

An intelligent vehicle image segmentation and quality assessment model

机译:智能车辆图像分割和质量评估模型

获取原文
获取原文并翻译 | 示例

摘要

Image quality assessment (IQA) plays a significant role in computer vision. The performances of traditional approaches are prone to be affected by noise or complicated background. Image quality assessment towards vehicle is important for vehicle recognition and classification, which is widely applied in video surveillance. In this paper, we propose a novel full-reference image quality assessment (FR-IQA) towards vehicle scene. More specifically, we first leverage background subtraction to obtain foreground pixels, which represents the vehicle silhouette. Subsequently, we train a classifier based on Histograms of Orientation Gradient (HOG) feature to further select candidate objects from the foreground pixels. Afterwards, we design a two-stage CNN architecture to extract deep representation of reference and test images, and gradient information is also considered as the second feature. Finally, we design FR-IQA based on feature similarity index, which is utilized to recognize the similarity between reference vehicle image and test image. Extensive experiment has demonstrated that our method is effect and robust.
机译:图像质量评估(IQA)在计算机视觉中起着重要作用。传统方法的性能易受噪音或复杂的背景的影响。对车辆的图像质量评估对于车辆识别和分类是重要的,这在视频监控中广泛应用于视频监控。在本文中,我们向车辆场景提出了一种新颖的全参考图像质量评估(FR-IQA)。更具体地,我们首先利用背景减法来获得代表车辆轮廓的前景像素。随后,我们基于定向梯度(HOG)特征的直方图训练分类器,以进一步从前台像素中选择候选对象。之后,我们设计了两级CNN架构,以提取参考和测试图像的深度表示,并且梯度信息也被认为是第二特征。最后,我们基于特征相似性指数设计FR-IQA,其用于识别参考车辆图像和测试图像之间的相似性。广泛的实验表明,我们的方法是效果和鲁棒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号