首页> 外文期刊>Future generation computer systems >Similarity preserving overlapping community detection in signed networks
【24h】

Similarity preserving overlapping community detection in signed networks

机译:在签名网络中保留重叠的社区检测的相似性

获取原文
获取原文并翻译 | 示例

摘要

Community detection in signed networks is a challenging research problem, and is of great importance to understanding the structural and functional properties of signed networks. It aims at dividing nodes into different clusters with more intra-cluster and less inter-cluster links. Meanwhile, most positive links should lie within clusters and most negative links should lie between clusters. In recent years, some methods for community detection in signed networks have been proposed, but few of them focus on overlapping community detection. Moreover, most of them directly exploit the sparse link topology to detect communities, which often makes them perform poorly. In view of this, in this paper we propose a similarity preserving overlapping community detection (SPOCD) method. SPOCD firstly extracts node similarity information and geometric structure information from the link topology, and then uses a graph regularized binary semi-nonnegative matrix factorization (GRBSNMF) model to fuse these two sources of information to detect communities. Through this mechanism, nodes with high similarity can be well preserved in the same community. Besides, SPOCD devises a special discretization strategy to obtain the binary community indicator matrix, which is very convenient for directly identifying overlapping communities in signed networks. We conduct extensive experiments on synthetic and real-world signed networks, and the results demonstrate that our method outperforms state-of-the-art methods.
机译:签署网络中的社区检测是一个具有挑战性的研究问题,并且非常重视了解签名网络的结构和功能性质。它旨在将节点划分为具有更多簇内和较少的簇间链路的不同群集。同时,大多数积极的链接应该躺在群集内,大多数负面链接应该在集群之间撒谎。近年来,已经提出了一些用于签署网络的社区检测方法,但其中很少有人关注重叠的社区检测。此外,它们中的大多数直接利用稀疏链接拓扑以检测社区,这通常使它们表现不佳。鉴于此,在本文中,我们提出了一种相似性,保持重叠的群落检测(Spocd)方法。 Spocd首先从链接拓扑中提取节点相似度信息和几何结构信息,然后使用图形正规化二进制半非非负矩阵分解(GRBSNMF)模型来融合这些两个信息来检测社区。通过这种机制,具有高相似性的节点可以在同一社区中保留很好。此外,Spocd设计了一种特殊的离散化策略来获得二进制社区指标矩阵,这对于直接识别签名网络中的重叠社区非常方便。我们对综合和真实世界签名网络进行了广泛的实验,结果表明,我们的方法优于最先进的方法。

著录项

  • 来源
    《Future generation computer systems》 |2021年第3期|275-290|共16页
  • 作者单位

    School of Computer Science South China Normal University Guangzhou 510631 Guangdong China School of Information Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou 510225 Guangdong China;

    School of Computer Science South China Normal University Guangzhou 510631 Guangdong China;

    School of Computer Science South China Normal University Guangzhou 510631 Guangdong China;

    School of Information Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou 510225 Guangdong China;

    Department of Computing Coventry University Coventry CV15FB UK;

    School of Computer Science South China Normal University Guangzhou 510631 Guangdong China;

    Department of Computing Coventry University Coventry CV15FB UK;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Signed networks; Overlapping community detection; Node similarity; Semi-nonnegative matrix factorization; Graph regularization;

    机译:签名网络;重叠的社区检测;节点相似度;半非负矩阵分解;图形规则化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号