首页> 外文期刊>Future generation computer systems >Omnibus outlier detection in sensor networks using windowed locality sensitive hashing
【24h】

Omnibus outlier detection in sensor networks using windowed locality sensitive hashing

机译:使用窗口局部敏感散列传感器网络中的Omnibus异常检测

获取原文
获取原文并翻译 | 示例

摘要

Wireless Sensor Networks (WSNs) have become an integral part of cutting edge technological paradigms such as the Internet-of-Things (loT) which incorporates a variety of smart application scenarios. WSNs include tiny sensors (motes), with constrained hardware capabilities and limited power supply that can collaboratively function in an unsupervised manner for a long period of time. Their purpose is to continuously monitor quantities of interest and provide answers to application queries. Sensor data streams are inherently spatiotemporal in nature, both because mote measurements form multidimensional time series and due to the spatial reference on the data based on the realm sensed by a mote. Motes are designed to be inexpensive, and thus sensory hardware is prone to temporary or permanent failures yielding faulty measurements. Such measurements may unpredictably forge a query answer, while truthful but abnormal mote samples may indicate undergoing phenomena. Therefore, outlier detection in sensor networks is of utmost importance. With limited power supply and communication being by far the main culprit in energy drain, outlier detection techniques in WSNs should achieve appropriate balance between reducing communication and providing real-time, continuously updated outlier reports. Prior works employ probabilistic or best effort approaches to accomplish the task, which either unpredictably compromise outlier detection accuracy or fail to explicitly tune the amount of communicated data. In this work, we introduce an omnibus outlier detection solution over spatiotemporally referenced sensor data that is capable of: (a) directly trading communication reduction for outlier detection quality with predictable accuracy guarantees, (b) accommodating both uni- and multi-dimensional outlier definitions, (c) operating under various streaming window models and (d) incorporating a wide variety of similarity measures to judge outliers.
机译:无线传感器网络(WSNS)已成为切削刃技术范式的一个组成部分,例如互联网(批次),其中包含各种智能应用方案。 WSN包括微小传感器(MOTES),具有约束的硬件功能和有限的电源,可以长时间以无监督的方式协作功能。他们的目的是不断监控兴趣的数量,并为应用程序查询提供答案。传感器数据流本质上是天然的,因为MOTE测量形成多维时间序列,并且由于基于MOTE所感测的域的数据对数据的空间引用。仪器设计成廉价,因此感官硬件容易出现临时或永久性故障,从而产生错误的测量。这种测量可能无法预测地伪造查询答案,而真实但异常的样品可能表示正在进行的现象。因此,传感器网络中的异常检测至关重要。通过有限的电源和通信在迄今为止的电源流失中的主要罪魁祸首,WSN中的异常检测技术应在减少通信和提供实时,不断更新的异常报告之间实现适当的平衡。先前作品采用概率或最佳努力方法来完成任务,无论是不可预测的均衡异常检测准确性还是未明确调整传送数据量。在这项工作中,我们在Spatibperally参考传感器数据上引入了Omnibus异常检测解决方案,其能够:(a)以可预测的精度保证,(b)可接受uni和多维异常转口定义,直接交易降低通信检测质量。(b) (c)在各种流窗口模型和(d)下进行各种相似措施来判断异常值。

著录项

  • 来源
    《Future generation computer systems》 |2020年第9期|587-609|共23页
  • 作者单位

    ATHENA Research and Innovation Centre Artemidos 6 & Epidavrou GR-15125 Athens Greece Department of Electrical and Computer Engineering Technical University of Crete University Campus. GR-73100 Chania Greece;

    ATHENA Research and Innovation Centre Artemidos 6 & Epidavrou GR-15125 Athens Greece Department of Electrical and Computer Engineering Technical University of Crete University Campus. GR-73100 Chania Greece;

    ATHENA Research and Innovation Centre Artemidos 6 & Epidavrou GR-15125 Athens Greece Department of Electrical and Computer Engineering Technical University of Crete University Campus. GR-73100 Chania Greece;

    Department of Informatics Athens University of Economics and Business 76 Patission St. GR-10434 Athens Greece;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sensor network; Outlier; Locality sensitive hashing; Streaming window model; Similarity estimation;

    机译:传感器网络;异常值;地区敏感散列;流窗口模型;相似性估计;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号