首页> 外文期刊>Future generation computer systems >Defending network intrusion detection systems against adversarial evasion attacks
【24h】

Defending network intrusion detection systems against adversarial evasion attacks

机译:防御网络入侵检测系统对抗对抗逃避攻击

获取原文
获取原文并翻译 | 示例

摘要

Intrusion Detection and the ability to detect attacks is a crucial aspect to ensure cybersecurity. However, what if an IDS (Intrusion Detection System) itself is attacked; in other words what defends the defender? In this work, the focus is on countering attacks on machine learning-based cyberattack detectors. In principle, we propose the adversarial machine learning detection solution. Indeed, contemporary machine learning algorithms have not been designed bearing in mind the adversarial nature of the environments they are deployed in. Thus, Machine Learning solutions are currently the target of a range of attacks. This paper evaluates the possibility of deteriorating the performance of a well-optimised intrusion detection algorithm at test time by crafting adversarial attacks with the four of the recently proposed methods and then offers a way to detect those attacks. The relevant background is provided for both artificial neural networks and four ways of crafting adversarial attacks. The new detection method is explained in detail, and the results of five different classifiers are compared. To the best of our knowledge, detecting adversarial attacks on artificial neural networks has not yet been widely researched in the context of intrusion detection systems.
机译:入侵检测和检测攻击的能力是一个关键方面,以确保网络安全。但是,如果IDS(入侵检测系统)本身遭到攻击,该攻击怎么样;换句话说,捍卫后卫的是什么?在这项工作中,重点是在对基于机器学习的网络角探测器上进行攻击。原则上,我们提出了对抗机器学习检测解决方案。实际上,当代机器学习算法尚未设计核对他们部署的环境的对抗性质。因此,机器学习解决方案目前是一系列攻击的目标。本文通过使用最近提出的四种方法制作对抗性攻击来评估在测试时间下造成良好优化的入侵检测算法性能的可能性,然后提供一种检测这些攻击的方法。提供相关背景,用于人工神经网络和四种制备对抗性攻击的方式。详细解释了新的检测方法,比较了五种不同分类器的结果。据我们所知,检测对人工神经网络的对抗性攻击尚未在入侵检测系统的背景下被广泛研究。

著录项

  • 来源
    《Future generation computer systems》 |2020年第9期|148-154|共7页
  • 作者单位

    ITTI Sp. z o.o. Poland UTP University of Science and Technology Poland;

    ITTI Sp. z o.o. Poland UTP University of Science and Technology Poland;

    ITTI Sp. z o.o. Poland UTP University of Science and Technology Poland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号