首页> 外文期刊>Future generation computer systems >Energy production predication via Internet of Thing based machine learning system
【24h】

Energy production predication via Internet of Thing based machine learning system

机译:基于事物的机器学习系统能源生产预测

获取原文
获取原文并翻译 | 示例

摘要

Wind energy is an interesting source of alternative energy to complement the Brazilian energy matrix. However, one of the great challenges lies in managing this resource, due to its uncertainty behavior. This study addresses the estimation of the electric power generation of a wind turbine, so that this energy can be used efficiently and sustainable. Real wind and power data generated in set of wind turbines installed in a wind farm in Ceara State, Brazil, were used to obtain the power curve from a wind turbine using logistic regression, integrated with Nonlinear Autoregressive neural networks to forecast wind speeds. In our system the average error in power generation estimate is of 29 W for 5 days ahead forecast. We decreased the error in the manufacturer's power curve in 63%, with a logics regression approach, providing a 2.7 times more accurate estimate. The results have a large potential impact for the wind farm managers since it could drive not only the operation and maintenance but management level of energy sells. (C) 2019 Elsevier B.V. All rights reserved.
机译:风能是一种有趣的替代能源来源,可以补充巴西能量矩阵。然而,由于其不确定性行为,其中一个巨大的挑战是管理这种资源。该研究解决了风力涡轮机的发电产生的估计,使得该能量可以有效和可持续地使用。在巴西Ceara State安装在风电场的一套风力电机中产生的真实风电源数据用于使用Logistic回归从风力涡轮机获得电源曲线,与非线性自回归神经网络集成来预测风速。在我们的系统中,发电估计的平均误差为29 W,预测5天。我们将制造商的功率曲线中的错误降低了63%,具有逻辑回归方法,提供了2.7倍的准确估计。由于它不仅可以开启运营和维护而且管理水平销售,因此结果对风电场管理人员具有很大的潜在影响。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号