首页> 外文期刊>Future generation computer systems >Flexible mesh morphing in sustainable design using data mining and mesh subdivision
【24h】

Flexible mesh morphing in sustainable design using data mining and mesh subdivision

机译:使用数据挖掘和网格细分的可持续设计中的灵活网格变形

获取原文
获取原文并翻译 | 示例

摘要

As a representative method of model surface, triangular mesh, which commonly has the stereo lithography (STL) format, has recently been widely applied in the CAD/CAE/CAM field, due to its superior robustness and high efficiency in tool-path generation. 3D product model optimization is of great importance for improvement of function, reduction of production material, and improvement of the company's competition. Based on the circumstance of 3D modeling, simulation and optimization technologies, developing a more sustainable product and process become possible. However, there are many situations of the morphing, which are hard to be uniformed. Thus, developing a commonly used data-driven morphing method is difficult. In this paper, morphing situations are categorized into two classes, the algebraic morphing and the free-form morphing. Algebraic morphing patterns are developed, which can be adopted independently or combined together to complete complicated morphing operations. In the free-form morphing, control points are obtained by data mining, and then mesh subdivision is applied to refine surfaces smoothly. The proposed morphing method is applied to a truss core panel and a human head model, clarifying the robust function and high efficiency of the method proposed in this study to deal with complex 3D product model sustainable optimization.
机译:作为模型表面的一种代表性方法,三角形网格通常具有立体光刻(STL)格式,由于其优越的鲁棒性和高效的刀具路径生成能力,最近已广泛应用于CAD / CAE / CAM领域。 3D产品模型优化对于功能的改进,生产材料的减少以及公司竞争的改善至关重要。基于3D建模,仿真和优化技术的情况,开发更可持续的产品和过程成为可能。但是,变形的情况很多,很难统一。因此,开发常用的数据驱动变形方法是困难的。本文将变形情况分为两类:代数变形和自由变形。开发了代数变形模式,可以独立采用或组合在一起以完成复杂的变形操作。在自由变形中,通过数据挖掘获得控制点,然后应用网格细分以平滑地细化曲面。提出的变形方法应用于桁架核心板和人的头部模型,阐明了本研究中提出的方法的鲁棒功能和高效率,以应对复杂的3D产品模型的可持续性优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号