首页> 外文期刊>Future generation computer systems >Big Data analytics and Computational Intelligence for Cyber-Physical Systems: Recent trends and state of the art applications
【24h】

Big Data analytics and Computational Intelligence for Cyber-Physical Systems: Recent trends and state of the art applications

机译:用于网络物理系统的大数据分析和计算智能:最新趋势和最新应用程序

获取原文
获取原文并翻译 | 示例

摘要

Big data is fuelling the digital revolution in an increasingly knowledge driven and connected society by offering big data analytics and computational intelligence based solutions to reduce the complexity and cognitive burden on accessing and processing large volumes of data. In this paper, we discuss the importance of big data analytics and computational intelligence techniques applied to data produced from the myriad of pervasively connected machines and personalized devices offering embedded and distributed information processing capabilities. We provide a comprehensive survey of computational intelligence techniques appropriate for the effective processing and analysis of big data. We discuss a number of exemplar application areas that generate big data and can hence benefit from its effective processing. State of the art research and novel applications in health-care, intelligent transportation and social network sentiment analysis, are presented and discussed in the context of Big data, Cyber-Physical Systems (CPS), and Computational Intelligence (CI). We present a data modelling methodology, which introduces a novel biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). The HSTSM modelling approach incorporates a number of soft computing techniques such as: deep belief networks, auto-encoders, agglomerative hierarchical clustering and temporal sequence processing, in order to address the computational challenges arising from analysing and processing large volumes of diverse data to provide an effective big data analytics tool for diverse application areas. A conceptual cyber-physical architecture, which can accommodate and benefit from the proposed methodology, is further presented.
机译:大数据通过提供大数据分析和基于计算智能的解决方案来降低访问和处理大量数据的复杂性和认知负担,从而在日益知识驱动和互联的社会中推动了数字革命。在本文中,我们讨论了将大数据分析和计算智能技术应用于从无数普及的机器和提供嵌入式和分布式信息处理功能的个性化设备产生的数据中的重要性。我们对适用于大数据有效处理和分析的计算智能技术进行了全面调查。我们讨论了产生大量数据并因此可以从其有效处理中受益的许多示例性应用领域。在大数据,网络物理系统(CPS)和计算智能(CI)的背景下,介绍和讨论了医疗保健,智能交通和社交网络情感分析中的最新研究和新颖应用。我们提出了一种数据建模方法,该方法介绍了一种新颖的,受到生物学启发的通用生成建模方法,称为分层时空状态机(HSTSM)。 HSTSM建模方法结合了许多软计算技术,例如:深度信任网络,自动编码器,聚集层次聚类和时间序列处理,以解决由于分析和处理大量不同数据以提供一个可扩展性而带来的计算难题。适用于不同应用领域的有效大数据分析工具。进一步介绍了可以容纳所提出的方法并从中受益的概念网络物理体系结构。

著录项

  • 来源
    《Future generation computer systems》 |2020年第4期|766-778|共13页
  • 作者

  • 作者单位

    Interactive Coventry Limited Coventry University Technology Park Puma Way Coventry CV1 2TT United Kingdom Faculty of Engineering Environment & Computing School of Computing Electronics and Mathematics Coventry University Priory Street Coventry CV1 5FB United Kingdom;

    Interactive Coventry Limited Coventry University Technology Park Puma Way Coventry CV1 2TT United Kingdom School of Computer Science and Electronic Engineering University of Essex Wivenhoe Park Colchester CP4 3SQ United Kingdom;

    Interactive Coventry Limited Coventry University Technology Park Puma Way Coventry CV1 2TT United Kingdom Coventry University Enterprise Ltd Coventry University Technology Park Puma Way Coventry CV1 2TT United Kingdom;

    Interactive Coventry Limited Coventry University Technology Park Puma Way Coventry CV1 2TT United Kingdom;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Big Data; Big Data analytics; Cyber-Physical Systems; Computational Intelligence; CI and CPS applications; HSTSM;

    机译:大数据;大数据分析;网络物理系统;计算智能;CI和CPS应用程序;高速钢;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号