首页> 外文期刊>Future generation computer systems >Offloading decision methods for multiple users with structured tasks in edge computing for smart cities
【24h】

Offloading decision methods for multiple users with structured tasks in edge computing for smart cities

机译:智能城市边缘计算中具有结构化任务的多个用户的卸载决策方法

获取原文
获取原文并翻译 | 示例

摘要

An edge computing system is an emergent architecture for providing computing, storage, control, and networking abilities, that is an important technology to realize Internet of Things and smart cities. In an edge computing environment, users can offload their computationally expensive tasks to offloading points, which may reduce the energy consumption or communication delay. There are a large number of offloading points and users in a system, and their tasks are structured. However, resources of offloading points are limited, and users have different preferences for energy consumption and communication delays. In this paper, we first establish a system model for the environment with multiple users, multiple offloading points, and structured tasks. Then, we formalize an offloading decision problem in such an environment as a cost-minimization problem, which is a NP-hard problem. Thus, we design a method based on backtracking to obtain its exact solution; the method's time complexity is, unfortunately, exponential with the number of offloading points. To reduce the complexity, a method based on an improved genetic algorithm and a method based on a greedy strategy are designed. Finally, we validate and compare three methods in terms of the total cost of all users, resource utilization of offloading points and execution time. The simulation results show that the last method performs the best.
机译:边缘计算系统是一种新兴的体系结构,用于提供计算,存储,控制和联网功能,这是实现物联网和智慧城市的重要技术。在边缘计算环境中,用户可以将其计算量大的任务卸载到卸载点,这可以减少能耗或通信延迟。系统中有大量卸载点和用户,其任务是结构化的。然而,卸载点的资源是有限的,并且用户对于能量消耗和通信延迟具有不同的偏好。在本文中,我们首先为具有多个用户,多个卸载点和结构化任务的环境建立系统模型。然后,我们将成本最小化问题(NP-hard问题)这样的环境下的卸载决策问题形式化。因此,我们设计了一种基于回溯的方法来获得其精确解。不幸的是,该方法的时间复杂度与卸载点的数量成指数关系。为了降低复杂度,设计了一种基于改进遗传算法的方法和一种基于贪婪策略的方法。最后,我们在所有用户的总成本,卸载点的资源利用率和执行时间方面验证并比较了三种方法。仿真结果表明,最后一种方法效果最好。

著录项

  • 来源
    《Future generation computer systems》 |2020年第4期|717-729|共13页
  • 作者

  • 作者单位

    School of Computer Science and Engineering Central South University Changsha 410000 China;

    Computing Center Shanghai University Shanghai 200444 PR China;

    College of Computer Science and Technology Zhejiang University Hangzhou 310027 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Edge computing; Internet of things; Smart city; Offloading decision; Minimization;

    机译:边缘计算;物联网;智慧城市;卸货决定;最小化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号