首页> 外文期刊>Future generation computer systems >Parallelizing Machine Learning as a service for the end-user
【24h】

Parallelizing Machine Learning as a service for the end-user

机译:并行机器学习作为面向最终用户的服务

获取原文
获取原文并翻译 | 示例

摘要

As Machine Learning (ML) applications are becoming ever more pervasive, fully-trained systems are made increasingly available to a wide public, allowing end-users to submit queries with their own data, and to efficiently retrieve results. With increasingly sophisticated such services, a new challenge is how to scale up to ever growing user bases. In this paper, we present a distributed architecture that could be exploited to parallelize a typical ML system pipeline. We propose a case study consisting of a text mining service, and discuss how the method can be generalized to many similar applications. We demonstrate the significance of the computational gain boosted by the distributed architecture by way of an extensive experimental evaluation.
机译:随着机器学习(ML)应用程序变得越来越普及,经过全面培训的系统越来越广泛地提供给广大公众,允许最终用户使用自己的数据提交查询并有效地检索结果。随着此类服务的日益完善,新的挑战是如何扩展到不断增长的用户基础。在本文中,我们提出了一种分布式体系结构,可以利用该体系结构并行化典型的ML系统管道。我们提出了一个由文本挖掘服务组成的案例研究,并讨论了如何将该方法推广到许多类似的应用程序。通过广泛的实验评估,我们证明了分布式架构所提高的计算增益的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号