首页> 外文期刊>Future generation computer systems >Adaptive sliding windows for improved estimation of data center resource utilization
【24h】

Adaptive sliding windows for improved estimation of data center resource utilization

机译:自适应滑动窗口可改善对数据中心资源利用率的估计

获取原文
获取原文并翻译 | 示例

摘要

Accurate prediction of data center resource utilization is required for capacity planning, job scheduling, energy saving, workload placement, and load balancing to utilize the resources efficiently. However, accurately predicting those resources is challenging due to dynamic workloads, heterogeneous infrastructures, and multi-tenant co-hosted applications. Existing prediction methods use fixed size observation windows which cannot produce accurate results because of not being adaptively adjusted to capture local trends in the most recent data. Therefore, those methods train on large fixed sliding windows using an irrelevant large number of observations yielding to inaccurate estimations or fall for inaccuracy due to degradation of estimations with short windows on quick changing trends. In this paper we propose a deep learning-based adaptive window size selection method, dynamically limiting the sliding window size to capture the trend for the latest resource utilization, then build an estimation model for each trend period. We evaluate the proposed method against multiple baseline and state-of-the-art methods, using real data-center workload data sets. The experimental evaluation shows that the proposed solution outperforms those state-of-the-art approaches and yields 16 to 54% improved prediction accuracy compared to the baseline methods.
机译:为了进行容量规划,作业调度,节能,工作负载放置和负载平衡,需要准确预测数据中心资源利用率,以有效利用资源。但是,由于动态的工作负载,异构的基础结构和多租户共同托管的应用程序,准确预测这些资源具有挑战性。现有的预测方法使用固定大小的观察窗口,由于无法自适应地调整以捕获最新数据中的局部趋势,因此无法产生准确的结果。因此,这些方法使用不相关的大量观测值在较大的固定滑动窗口上进行训练,从而导致估算值不准确,或者由于快速变化趋势上的窗数较短而导致的估算值下降而导致估算值不准确。在本文中,我们提出了一种基于深度学习的自适应窗口大小选择方法,该方法动态限制滑动窗口大小以捕获最新资源利用的趋势,然后针对每个趋势周期建立一个估计模型。我们使用真实的数据中心工作负载数据集,针对多种基准和最新方法评估了所提出的方法。实验评估表明,所提出的解决方案优于那些最先进的方法,与基线方法相比,预测精度提高了16%至54%。

著录项

  • 来源
    《Future generation computer systems》 |2020年第3期|212-224|共13页
  • 作者

  • 作者单位

    Universitat Politecnica de Catalunya (UPC) Spain Barcelona Supercomputing Center (BSC) Spain University of the Punjab (PU) Pakistan;

    University of the Punjab (PU) Pakistan;

    Universitat Politecnica de Catalunya (UPC) Spain Barcelona Supercomputing Center (BSC) Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sliding windows; Adaptive observation window; Time series; Resource estimation; Data center;

    机译:推拉窗自适应观察窗;时间序列;资源估算;数据中心;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号