首页> 外文期刊>Future generation computer systems >P-DACCA: A Probabilistic Direction-Aware Cooperative Collision Avoidance Scheme for VANETs
【24h】

P-DACCA: A Probabilistic Direction-Aware Cooperative Collision Avoidance Scheme for VANETs

机译:P-DACCA:VANET的概率方向感知协作防撞方案

获取原文
获取原文并翻译 | 示例

摘要

One of the major challenges in Vehicular Ad hoc Networks (VANETs) is to find a stable and robust Cooperative Collision Avoidance (CCA) scheme to address the rising death toll caused by road accidents every year. This work presents a Probabilistic-Direction-Aware Cooperative Collision Avoidance (P-DACCA) scheme that takes into account realistic bi-directional traffic, which makes this work unique in the VANETs' collision avoidance domain. The scheme starts with formation of dynamic clusters, which becomes challenging due to bi-directional heterogeneous traffic and intra-cluster and inter-cluster collision avoidance. For clustering, we modify the k-medoids algorithm by incorporating Hamming distance as an additional metric for direction-awareness. After clustering, relative distances and speeds of nodes with respect to their expected states are computed. The scheme then estimates a collision probability on the basis of a node's expected state and provides an early warning when the probability exceeds a predefined threshold. For implementing a preventive measure, we introduce an adaptive Benign factor that computes the safe speed for a target node. The safe speed is encapsulated along with the collision probability into an early warning message for dissemination to the target node to avoid an upcoming threat. Simulation results demonstrate significant improvement of the proposed scheme in terms of cluster stability, reduced number of collisions, low latency and low communication overhead. (C) 2019 Elsevier B.V. All rights reserved.
机译:车载自组织网络(VANET)的主要挑战之一是找到一种稳定,强大的协作防撞(CCA)方案,以解决每年因道路交通事故造成的死亡人数上升的问题。这项工作提出了一种概率方向感知的协作避免冲突(P-DACCA)方案,该方案考虑了现实的双向流量,这使得该工作在VANET的避免冲突域中是独一无二的。该方案始于动态集群的形成,由于双向异构流量以及集群内和集群间的冲突避免,这变得具有挑战性。对于聚类,我们通过合并汉明距离作为方向感知的附加指标来修改k-medoids算法。聚类后​​,计算节点相对于其预期状态的相对距离和速度。然后,该方案基于节点的预期状态估计冲突概率,并在该概率超过预定义阈值时提供预警。为了实施预防措施,我们引入了自适应良性因子,该因子可计算目标节点的安全速度。安全速度与碰撞概率一起封装在预警消息中,以传播到目标节点,以避免即将来临的威胁。仿真结果表明,该方案在集群稳定性,减少冲突次数,低等待时间和低通信开销方面有显着改进。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号