首页> 外文期刊>Future generation computer systems >LADRA: Log-based abnormal task detection and root-cause analysis in big data processing with Spark
【24h】

LADRA: Log-based abnormal task detection and root-cause analysis in big data processing with Spark

机译:LADRA:使用Spark在大数据处理中基于日志的异常任务检测和根本原因分析

获取原文
获取原文并翻译 | 示例

摘要

As big data processing is being widely adopted by many domains, massive amount of generated data become more reliant on the parallel computing platforms for analysis, wherein Spark is one of the most widely used frameworks. Spark's abnormal tasks may cause significant performance degradation, and it is extremely challenging to detect and diagnose the root causes. To that end, we propose an innovative tool, named LADRA, for log-based abnormal tasks detection and root-cause analysis using Spark logs. In LADRA, a log parser first converts raw log files into structured data and extracts features. Then, a detection method is proposed to detect where and when abnormal tasks happen. In order to analyze root causes we further extract pre-defined factors based on these features. Finally, we leverage General Regression Neural Network (GRNN) to identify root causes for abnormal tasks. The likelihood of reported root causes are presented to users according to the weighted factors by GRNN. LADRA is an off-line tool that can accurately analyze abnormality without extra monitoring overhead. Four potential root causes, i.e., CPU, memory, network, and disk I/O, are considered. We have tested LADRA atop of three Spark benchmarks by injecting aforementioned root causes. Experimental results show that our proposed approach is more accurate in the root cause analysis than other existing methods. (C) 2018 Elsevier B.V. All rights reserved.
机译:随着大数据处理被许多领域广泛采用,大量生成的数据变得越来越依赖于并行计算平台进行分析,其中Spark是使用最广泛的框架之一。 Spark的异常任务可能会导致性能显着下降,并且检测和诊断根本原因非常具有挑战性。为此,我们提出了一种创新的工具,称为LADRA,用于使用Spark日志进行基于日志的异常任务检测和根本原因分析。在LADRA中,日志解析器首先将原始日志文件转换为结构化数据并提取功能。然后,提出了一种检测方法,以检测异常任务在何时何地发生。为了分析根本原因,我们基于这些特征进一步提取了预定义的因素。最后,我们利用通用回归神经网络(GRNN)识别异常任务的根本原因。 GRNN根据加权因子向用户显示报告的根本原因的可能性。 LADRA是一种离线工具,可以准确地分析异常情况而无需额外的监视开销。考虑了四个潜在的根本原因,即CPU,内存,网络和磁盘I / O。通过注入上述根本原因,我们已经在三个Spark基准之上测试了LADRA。实验结果表明,我们提出的方法在根本原因分析中比其他现有方法更准确。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Future generation computer systems》 |2019年第6期|392-403|共12页
  • 作者单位

    Univ Cent Florida, Dept Comp Sci, Orlando, FL 32816 USA;

    Univ Cent Florida, Dept Comp Sci, Orlando, FL 32816 USA|Beijing Jiaotong Univ, Sch Software Engn, Beijing, Peoples R China;

    Univ Cent Florida, Dept Comp Sci, Orlando, FL 32816 USA;

    Kyungpook Natl Univ, Dept Comp Sci & Engn, Daegu, South Korea;

    IBM TJ Watson Res Ctr, Yorktown Hts, NY USA;

    Univ Cent Florida, Dept Comp Sci, Orlando, FL 32816 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Spark; Log analysis; Abnormal task; Root cause;

    机译:火花;日志分析;异常任务;根本原因;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号