首页> 外文期刊>Future generation computer systems >Energy production predication via Internet of Thing based machine learning system
【24h】

Energy production predication via Internet of Thing based machine learning system

机译:通过基于物联网的机器学习系统的互联网进行能源生产预测

获取原文
获取原文并翻译 | 示例

摘要

Wind energy is an interesting source of alternative energy to complement the Brazilian energy matrix. However, one of the great challenges lies in managing this resource, due to its uncertainty behavior. This study addresses the estimation of the electric power generation of a wind turbine, so that this energy can be used efficiently and sustainable. Real wind and power data generated in set of wind turbines installed in a wind farm in Ceara State, Brazil, were used to obtain the power curve from a wind turbine using logistic regression, integrated with Nonlinear Autoregressive neural networks to forecast wind speeds. In our system the average error in power generation estimate is of 29 W for 5 days ahead forecast. We decreased the error in the manufacturer's power curve in 63%, with a logics regression approach, providing a 2.7 times more accurate estimate. The results have a large potential impact for the wind farm managers since it could drive not only the operation and maintenance but management level of energy sells. (C) 2019 Elsevier B.V. All rights reserved.
机译:风能是替代巴西能源基础的一种有趣的替代能源。但是,由于其不确定性行为,最大的挑战之一是管理该资源。这项研究着眼于风力涡轮机发电量的估算,以便可以高效且可持续地使用这种能量。使用逻辑回归和非线性自回归神经网络集成来预测风速,使用安装在巴西塞阿拉州风力发电场的一组风力涡轮机中生成的实际风力和功率数据从风力涡轮机获取功率曲线。在我们的系统中,提前5天预测的平均发电误差为29W。我们采用逻辑回归方法将制造商功率曲线的误差降低了63%,提供了2.7倍的准确估算值。该结果对风电场管理人员具有巨大的潜在影响,因为它不仅可以驱动运营和维护,而且可以推动能源销售的管理水平。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号