首页> 外文期刊>Future generation computer systems >Scalable distributed control plane for On-line social networks support cognitive neural computing in software defined networks
【24h】

Scalable distributed control plane for On-line social networks support cognitive neural computing in software defined networks

机译:在线社交网络的可扩展分布式控制平面支持软件定义网络中的认知神经计算

获取原文
获取原文并翻译 | 示例

摘要

Though most of the current proposed distributed control planes maintain strong consistency among their controllers, this paper argues the strong consistency is not a prerequisite and proposes an Event Coordination System (ECS) that enables an efficient event replaying system and a distributed control plane (DisCon) using this event replaying system to construct eventually consistent global network topologies among its controllers without sacrificing scalability. Our ECS implements a novel request handling procedure that ensures a firstly received write request is firstly multi-casted, notified, and updated, so thus our DisCon can maximally ensure the same time sequence in which topology events get updated at different controllers and the constructed topologies can reflect the real network change in practice. We highlight the major mechanisms used, discuss the major causes of this eventual consistency, estimate the inconsistency window among controllers, and show how this eventual consistency does not make a big difference in supporting network applications. Experiments are conducted to evaluate our ECS and DisCon. The results show our DisCon has a larger event replay throughput and a lower event converging delay than HyperFlow, and larger flow setup rate and lower flow setup delay than most of the current distributed control planes. (C) 2018 Elsevier B.V. All rights reserved.
机译:尽管当前提出的大多数分布式控制平面在其控制器之间保持强一致性,但本文认为强一致性不是前提条件,并提出了一种事件协调系统(ECS),该系统可实现高效的事件重播系统和分布式控制平面(DisCon)使用此事件重播系统在其控制器之间构建最终一致的全局网络拓扑,而不会牺牲可伸缩性。我们的ECS实施了一种新颖的请求处理程序,可确保首先多播,通知和更新首先接收到的写请求,因此,我们的DisCon可以最大程度地确保在不同的控制器和构造的拓扑上更新拓扑事件的时间顺序相同可以反映出实际网络中的变化。我们重点介绍了所使用的主要机制,讨论了导致这种最终一致性的主要原因,估计了控制器之间的不一致窗口,并说明了这种最终一致性在支持网络应用程序中不会产生太大的变化。进行实验以评估我们的ECS和DisCon。结果表明,与大多数当前的分布式控制平面相比,我们的DisCon具有比HyperFlow更大的事件重播吞吐量和更低的事件收敛延迟,以及更大的流建立速率和更低的流建立延迟。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号