首页> 外文期刊>Future generation computer systems >An edge-stream computing infrastructure for real-time analysis of wearable sensors data
【24h】

An edge-stream computing infrastructure for real-time analysis of wearable sensors data

机译:边缘流计算基础架构,可实时分析可穿戴传感器数据

获取原文
获取原文并翻译 | 示例

摘要

The fast development of IoT in general and wearable smart sensors in particular in the context of wellness and healthcare are demanding for definition of specific infrastructure supporting real time data analysis for anomaly detection, event identification, situation awareness just to mention few. The explosion in the development and adoption of these smart wearable sensors has contributed to the definition of the Internet of Medical Things (IoMT), which is revolutionizing the way healthcare is tackled worldwide. Data produced by wearable sensors continuously grow and could be spread among clinical centers, hospitals, research labs, yielding to a Big Data management problem. In this paper we propose a technological and architectural solution, based on Open Source big data technologies to perform real-time analysis of wearable sensor data streams. The proposed architecture is composed of four distinct layers: a sensing layer, a pre-processing layer (Raspberry Pi), a cluster processing layer (Kafka's broker and Flink's mini-cluster) and a persistence layer (Cassandra database). A performance evaluation of each layer has been carried out by considering CPU and memory usage for accomplishing a simple anomaly detection task using the REALDISP dataset. (C) 2018 Elsevier B.V. All rights reserved.
机译:物联网(IoT)以及可穿戴式智能传感器(尤其是在健康和医疗保健方面)的快速发展要求定义特定的基础架构,以支持实时数据分析以进行异常检测,事件识别和态势感知,仅举几例。这些智能可穿戴传感器的开发和采用的爆炸式增长推动了医疗物联网(IoMT)的定义,该定义正在彻底改变全球医疗保健的解决方式。可穿戴式传感器产生的数据不断增长,并可能在临床中心,医院,研究实验室之间传播,从而产生了大数据管理问题。在本文中,我们提出了一种基于开源大数据技术的技术和体系结构解决方案,以对可穿戴传感器数据流进行实时分析。所提出的体系结构由四个不同的层组成:传感层,预处理层(Raspberry Pi),集群处理层(Kafka的代理和Flink的迷你集群)和持久层(Cassandra数据库)。通过考虑使用CPU和内存使用情况来完成每一层的性能评估,以使用REALDISP数据集完成简单的异常检测任务。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号